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Abstract

This report addresses the problem of achieving fault tolerant cooperation within small-
to medium-sized teams of heterogeneous mobile robots. I describe a software architec-
ture I have developed. called ALLIANCE, that facilitates robust., fault tolerant cooperative
control. and examine numerous issues in cooperative team design. ALLIANCE is a fully
distributed architecture that utilizes adaptive action selection to achieve cooperative control
in robot missions involving loosely coupled, largely independent tasks. The robots in this
architecture possess a variety of high-level functions that they can perform during a mission.
and must at all times select an appropriate action based on the requirements of the mission.
the activities of other robots, the current environmental conditions, and their own internal
states. Since such cooperative teams often work in dynamic and unpredictable environ-
ments, the software architecture allows the team members to respond robustly and reliably
to unexpected environmental changes and modifications in the robot team that may occur
due to mechanical failure, the learning of new skills, or the addition or removal of robots
from the team by human intervention. In addition, an extended version of ALLIANCE.
called L-ALLIANCE. incorporates a simple mechanism that allows teams of mobile robots
to learn from their previous experiences with other robots, allowing them to select their
own actions more efficiently on subsequent trials when working with "'familiar" robots on
missions composed of independent tasks. This mechanmsm allows a human system designer
to easily and quickly group together the appropriate combination of robots for a particular
mission, since robots need not have a priori knowledge of their teammates.

The development of ALLIANCE and L-ALLIANCE involved research on a number of
topics: fault tolerant cooperative control, adaptive action selection, distributed control.
robot awareness of team member actions, improving efficiency through learning, inter-robot
communication, action recognition, and local versus global control. This report describes
each of these topics in detail, along with experimental results of investigating these issues 0
both in simulated and in physical mobile robot teams. 0

I am not aware of any other cooperative control architecture that has exhibited the com-
bination of fault tolerance, reliability, adaptivity, and efficiency possible with ALLIANCE
and L-ALLIANCE. and which has been successfully demonstrated on physical mobile robot
teams.
Thesis Supervisor: Rodney A. Brooks . 7
Title: Professor of Computer Science "

!Dist sp* 18
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Chapter 1

Introduction

A key driving force in the development of mobile robotic systems is their potential for
reducing the need for human presence in dangerous applications, such as the cleanup
of toxic waste, nuclear power plant decommissioning. extra-planetary exploration,
search and rescue missions, and security, surveillance, or reconnaissance tasks: or in
repetitive types of tasks, such as automated manufacturing or industrial/household
maintenance. The nature of many of these challenging work environments requires
the robotic systems to work fully autonomously in achieving human-supplied goals.
One approach to designing these autonomous systems is to develop a single robot that
can accomplish particular goals in a given environment. However, the complexity of
many environments or missions may require a mixture of robotic capabilities that
is too extensive to design into a single robot. Additionally, time constraints may
require the use of multiple robots working simultaneously on different aspects of
the mission in order to successfully accomplish the objective. In some instances, it
may actually be easier or cheaper to design cooperative teams of robots to perform
some mission than it would be to use a single robot. Thus, we must build teams of
possibly heterogeneous robots that can work together to accomplish a mission that
no individual robot can accomplish alone.

This report addresses the problem of achieving fault tolerant cooperation within
small- to medium-sized teams of heterogeneous mobile robots (say, 2 to 10 robots) by
constructing a software architecture, called ALLIANCE, that facilitates cooperative
control, and by studying numerous issues in cooperative team design. ALLIANCE
is a fully distributed architecture that utilizes adaptive action selection to achieve
cooperative control in robot missions involving loosely coupled, largely independent
subtasks. The robots in this architecture possess a variety of high-level functions that
they can perform during a mission, and must at all times select an appropriate action
based on the requirements of the mission, the activities of other robots, the current
environmental conditions, and their own internal states. Since such cooperative teams
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often work in dynamic and unpredictable environments, the software architecture
allows the robot teai members to respond robustly. reliably, flexibly, and coherently
to unexpected environmental changes and modifications in the robot team that may
occur due to mechanical failure, the learning of new skills, or the addition or removal
of robots from the team by human intervention. In addition. I present an extended
version of ALLIANCE, called L-ALLIANCE. that uses a dynamic parameter update
mechanism to allow teams of robots to learn from their previous experiences with
other robots, and to select their own actions more efficiently on subsequent trials
when working with *'familiar" robots.

1.1 Cooperative Example: Hazardous Waste
Cleanup

On April 26, 1986, at 1:23 AM, the worst civilian nuclear power accident in history
occurred at the Chernobyl power station in Ukraine, U.S.S.R. [Woodruff, 1988]. The
nuclear reactor was destroyed by an explosion brought on by a series of human op-
erator errors in performing a test, with the resulting graphite fire in the reactor core
leading to the contamination of large areas surrounding the plant, requiring the evac-
uation of 135,000 people. More than two hundred fire fighters and on-site personnel
were treated for acute radiation sickness, and many died from direct exposure during
the initial emergency response. Although automated solutions to site evaluation were
attempted1 , nearly all of the work performed in containing the disaster had to be
carried out by humans, many of whom literally sacrificed their lives to stabilize the
reactor.

If teams of robots could have been sent into the Chernobyl power station in-
stead of teams of humans, many lives could have been saved. However, the robotics
community clearly has a long way to go before we can deal with such applications
in which the environment and the capabilities of the robots vary dynamically from
moment to moment. A situation as dangerous as that presented at Chernobyl is
an ideal application for groups of heterogeneous robots working together to accom-
plish a mission that is too hazardous for humans. However, notwithstanding the
non-trivial radiation-hardening advances needed to allow robots to perform in these
environments, many advances must also be made in the software control systems of
such robotic teams. This report addresses many of these software control issues of

'A German remote-controlled robot was sent to the site to help with the cleanup [Press, 1986],
but it failed immediately, presumably due to radiation bombardment. Supposedly a last resort, a
small radio-controlled toy car, altered to carry a video camera, turned out to be the most useful
automated solution for relaying information to the humans from the remote location.
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cooperative robotics that are necessary to achieve this ultimate goal of fault tolerant
cooperation in dynamic environments.

A tremendously simplified analog of the ('hernobyl application is used here as
a descriptive example of the type of cooperation I wish to achieve. Consider the
mission illustrated in figure 1-1, in which an artificial hazardous waste spill2 in a
large indoor area must be cleaned up. In this case, the spill consists of a number of
small cylindrical objects clustered in one area of the room. I p')retend that the spill is
dangerous enough that we prefer to avoid the risk of human exposure to toxins, and
opt instead to use an automated solution. The mission requires first, finding the spill
and then moving it to a. safe location in the room where we assume the hazardous
material can be dealt with more easily by humans. The mission also requires the team
to periodically report its progress to the humans monitoring the system by radioing a
message from the room entrance. If the monitoring human determines that sufficient
progress is not being made, the human sends in another robot or robots to help with
the mission.

A difficult, in this mission is that the human monitor does not know the exact
location of the spill in robot coordinates, and can only give the robots qualitative
information on the initial location of the spill and the final desired location to which
the spill must be moved. In this case, the robot or robots are told that. the initial
location is in the center of the front third of the room, and that the desired final
location of the spill is in the back center of the room, relative to the position of the
entrance. The ultimate goal is to have the mission completed as quickly as possible
without needlessly wasting energy.

For such a mission, it is quite possible that no individual robot possesses all the
required capabilities. Thus, we must be able to custom-design a multi-robot team
from the available pool of automata such that the group possesses all the required
capabilities, and the robots contain a considerable amount of overlap in their abilities.
The challenge for each robot, then, is to select the appropriate action to pursue
throughout the mission while responding appropriately to the effect of its own actions,
the actions of other team members, and dynamic changes in the environment or in
the team itself.

Developing a cooperative architecture that allows a team of robots to accomplish
this mission involves finding answers to a number of questions. For example, if more
than one robot can find the location of the toxic waste spill, how does a robot deter-
mine whether or not it should attempt that task? What if one robot is much better
at that task than any other team member? What. happens if the robot finding the

"2By artificial (rather than real), I mean that. I pretend that the objects the robots manipulate
are hazardous waste. I have not actually applied the robots to reA toxic waste spills, since they are
simply small laboratory research testbeds, and are in no way designed specifically for such missions.
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spill gets stuck in a corner somewhere and is never able to escape: does this mean
that the mission doomed to failure? Likewise. if more than one robot can report the
progress of the team, how do the robots determine which team member should actu-
ally perform that task? How do robots react if a new robot is suddenly added to the
team? What happens if the environment suddenly changes and the spill grows much
larger? Or, fortuitously, the spill disappears? If the team is using communication, is
it destined for failure if the communication mechanism breaks down? What assurance
do we have that the robots will be able to accomplish their mission even when no
robot failures occur? What if we wan~t to apply the robots to a much larger mission
- will their control architecture scale to such a mission? Are robot team miembers
required to have some knowledge of their teammates' capabilities before the start of
the mission? Can robot teammates improve the efficiency of their performance from
trial to trial when working with "familiar" robotL?

This report addresses these and other cooperative control issues by providing
mechanisms enabling such cooperation to be accomplished. Throughout the report, I
use the results of over 50 logged runs of the physical robots performing this hazardous
waste cleanup iaission to elucidate the important issues in heterogeneous mobile robot
cooperation. Additional experimental results of implementations of ALLIANCE in
different cooperative applications are reported in chapter 6, and provide further in-
sight into mobile robot cooperation.

1.2 Design Requirements of a Cooperative Archi-
tecture

The difficulties in designing a cooperative team are significant. In [Bond and Gasser,
1988], Bond and Gasser describe the basic problems the field of Distributed Artifi-
cial Intelligence must address; those aspects directly related to situated multi-robot
systems include the following:

"* How do we formulate, describe, decompose, and allocate problems among a
group of intelligent agents?

"* How do we enable agents to communicate and interact?

9 How do we ensure that agents act coherently in their actions?

"• How do we allow agents to recognize and reconcile conflicts?

The ALLIANCE architecture described in this report offers one solution to the
above questions. In addition to answering these questions, however, one of my pri-
mary design goals in developing a multi-robot cooperative architecture is to allow
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Figure 1-1: An example mission to be solved by a cooperative team: hazardous waste
cleanup.

the resulting robotic teams to be robust, reliable, and flexible. The following sub-
sections discuss these design requirements that I feel are particularly important for
cooperative robotics teams.

1.2.1 Robustness and Fault Tolerance

Robustness refers to the ability of a system to gracefully degrade in the presence of
partial system failure; the related notion of fault tolerance refers to the ability of a
system to detect and compensate for partial system failures. Requiring robustness and
fault tolerance in a cooperative architecture emphasizes the need to build cooperative
teams that minimize their vulnerability to individual robot outages - a requirement
that has many implications for the design of the cooperative team.

To achieve this design requirement, one must first ensure that critical control
behaviors are distributed across as many robots as possible rather than being cen-
tralized in one or a few robots. This complicates the issue of action selection among
the robots, but results in a more robust multi-robot team since the failure of one
robot does not jeopardize the entire mission.

Second, one must ensure that an individual robot does not rely on orders from a
higher-level robot to determine the appropriate actions it should employ. Relying on
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one, or a, few, coordinating robots makes the team much more vulnerable to individual
robot failures. Instead, each rol)ot should be able to p)erform some meaningful task.
up to its physical limitations, even when all other robots have failed.

And third, one must ensure that robots have some means for redistributing tasks
among themselves when rol)ots fail. This characteristic of task re-allocation is essen-
tial for a. team to accomplish its mission in a dynamnic environment.

1.2.2 Reliability

Reliability refers to the dependability of a system, and whether it functions properly
each time it is utilized. To properly analyze a cooperative robot architecture, one
should separate the architecture itself from the robots on which the architecture is
implemented. Clearly, if the architecture is implemented on robots that only function
20% of the time, one cannot expect a very dependable result from trial to trial.
One measure of the reliability of the architecture is its ability to guarantee that the
mission will be solved, within certain operating constraints, when applied to any
given cooperative robot team. Without this characteristic, the usefulness of a control
architecture is clearly much diminished.

As an example of a reliability problem exhibited in a control architectu e, consider
a situation in which two robots, r, and r2 , have two tasks, tj and t2, to perform. Let
us assume that their control architecture leads them to negotiate a task allocation
which results in r, performing task t1 and r 2 performing task t2. Further suppose
that r, experiences a mechanical failure that, neither r, nor r2 can detect. While
r, valiantly continues to complete task ti, robot r 2 successfully completes task t2.
However, although r2 also has the ability to successfully complete task t1 , it does
nothing further because it knows that r, is performing that task. Thus, the robots
continue forever, never completing the mission. One would probably not term such a
control architecture reliable, since a mere reallocation of the tasks would have resulted
in the mission being successfully completed.

1.2.3 Flexibility and Adaptivity

The terms flexibility and adaptivity refer to the ability of team members to modify
their actions as the environment or robot team changes. Ideally, the cooperative
team should be responsive to changes in individual robot skills and performance as
well as dynamic environmental changes. In addition, the team should not rely on a
prespecified group composition in order to achieve its mission.

The first of these requirements - the need for the teams to be responsive to
changes in robot performance - reflects the fact that the capabilities of robots change
over time due to learning, which should enhance performance, or due to mechanical or
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environmental causes that may reduce or increase a robot's success at certain tasks.

Team members should respond to these changes in performance bY taking over tasks
that are no longer being adequately performed or by relinquishing those tasks better
executed by others. Each robot must decide which task it will undertake based on
the actual puiformanat of tasks by other robots, rather than on what other robots
say that they are able to accomplish.

Robots must also exhibit flexibility in their action selection during the mission in
response to the dynamic nature of their environment. Obviously, in real environments
changes occur that cannot, be attributed to the actions of any robot team member
or members. Rather, outside forces not under the influence of the robot, team affect
the state of the environment throughout the mission. These effects may be either
destructive or beneficial, leading to an increase or decrease in the workload of the
robot team members. The robot team should therefore be flexible in its action selec-
tions, opportunistically adapting to environmental changes that eliminate the need
for certain tasks, or activating other tasks that a new environmental state requires.

The final flexibility requirement deals with the ease with which the developed
architecture can be used by differing groups of robots. The human system designer
should not be required to perform a great deal of preparatory work when utilizing
different teams of robots for various applications. Rather, I want to build all the
robots with the same control architecture and then allow the human designer to form
teams as desired from subsets of the available robots. For example, we may have a pool
of robots that specialize in various forms of toxic waste cleanup. However, depending
upon the particular site to be cleaned up. different groups of robots may be useful for
different missions, and thus the team composition varies. The aim is to have these
teams perform acceptably the very first time they are grouped together, without
requiring any robot to have prior knowledge of the abilities of other team members.
However, over time we want a given team of robots to improve its performance by
having each robot learn how the presence of other specific robots on the team should
affect its own behavior. For example, a robot r, that prefers to clean floors, but
can also empty the garbage, should learn that in the presence of robot ry, it should
automatically empty the garbage, since robot ry's only abilities are to clean the floors.

1.2.4 Coherence

Coherence refers to how well the team performs as a whole, and whether the actions
of individual agents combine toward some unifying goal. Typically, coherence is
measured along some dimension of evaluation, such as the quality of the solution or
the efficiency of the solution [Bond and Gasser, 19881. Efficiency considerations are
particularly important in teams of heterogeneous robots whose capabilities overlap,
since different robots are often able to perform the same task, but with quite different
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performance characteristics. To obtain a highly efficient team, the control architecture
should ensure that robots select tasks such that the overall mission performance is as
close to optimal as possible.

A team in which agents pursue incompatible actions, or in which they duplicate
each other's actions cannot be considered a highly coherent team. On the other hand.
designing a coherent team does not require the elimination of all possible conflict.
Rather, the agents must. be provided with some mechanism to resolve the conflicts
as they arise. A simple example of conflict occurs whenever multiple robots share
the same workspace: although they may have the same high-level goals. they may
at times try to occupy the same position in space, thus requiring them to resolve
their positioning conflict. This can usually be accomplished through a very simple
protocol.

Clearly, multi-robot teams exhibiting low coherence are of limited usefulness in
solving practical engineering problems. A design goal in building cooperative robot
teams must therefore be to achieve high coherence.

1.3 Preview of Results

The primary contribution of this report is ALLIANCE - a novel, fault tolerant co-
operative control architecture for small- to medium-sized heterogeneous mobile robot
teams applied to missions involving loosely-coupled, largely independent tasks. This
architecture is fully distributed at both the individual robot level and at the team
level. At the robot level, a number of interacting motivational behaviors control the
activation of the appropriate sets of behaviors which allow the robot to execute certain
tasks. At the team level, control is distributed equally to each robot team member,
allowing each robot to select its own tasks independently and without any centralized
control. These two levels of distribution allow the ALLIANCE architecture to scale
easily to missions involving larger numbers of tasks. The architecture utilizes no form
of negotiation or two-way conversations; instead, it uses a simple form of broadcast
communication that allows robots to be aware of the actions of their teammates. The
control mechanism of ALLIANCE is designed to facilitate fault tolerant cooperation;.
thus, it allows robots to recover from failures in individual robots or in the commu-
nication system, or to adapt their action selections due to changes in the robot team
membership or the changes of a dynamic environment. I also show that ALLIANCE
is guaranteed to allow robot teams to accomplish their mission for a large class of
applications.

My next major contribution is an extension to ALLIANCE, called L-ALLIANCE,
that uses a dynamic parameter update mechanism to allow robots to use learned
knowledge to improve their performance from trial to trial when working with "fa-
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miliar'" team members -- that is, team members with which they have previouslN
worked. I show that, for missions composed of independent tasks, the L-ALLIAN('E
mechanism allows team members to efficientl v select their act ions when working wit h
robots that have ov-erlapping capabilities. The significance of L-ALLIAN('E is that
it (1) eliminates the need for the human designer to adjust the parameters of the
architecture manually for each application, (2) allows the human designer to custom-
design teams of robots for specific missions, and (3) requires no advance knowledge
of the capabilities of robot team members.

I have implemented ALLIANCE and L-ALLIANCE on both simulated and physi-
cal robot teams performing a variety of missions, including a hazardous waste cleanup
mission, a, box pushing demonstration, a janitorial service mission, and a bounding
overwatch mission, as well as numerous generic missions. Those demonstrations vai-
idated this architecture and allowed me to study a number of important issues in
cooperative control. The key issues addressed in this report include the follow;ig:

"* Fault. tole,'ant cooperative control

"* Distributed control

"* Adaptive action selection

"* The importance of robot awareness

"* Inter-robot communication

"* Improving efficiency through learning

"* Action recognition

"• Local versus global control of the individual robot

Previous research in fully distributed heterogeneous viobile robot, cooperation in-
cludes [Noreils, 1993], who proposes a three-layered control architecture that includes
a planner level, a control level, and a functional level; [Caloud df al., 1990], who
describes an architecture that includes a task planner, a task allocator, a motion
planner, and an execution monitor; [Asama et al., 19921, who describes an architec-
ture called ACTRESS that utilizes a negotiation framework to allow robots to recruit
help when needed; and [Cohen et al., 1990a], who uses a hierarchical division of au-
thority to perform cooperative fire-fighting. However, these approaches deal primarily
with the task selection problem and largely ignore the issues so difficult for physical
robot teams, such as robot failure, communication noise, and dynamic environments.
Since these earlier approaches achieve efficiency at the expense of robustness and
adaptivity, I expect that they will not be able to exhibit the level of fault tolerance
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required for the types of cooperative control missions I address here. In contrast.
my research emphasizes the need for fault tolerant, and adaptive cooperative control
as a principal characteristic of the cooperative control architecture. I am not aware
of any other cooperative control architecture that has exhibited the combination of
fault tolerance, reliability, adaptivity, and efficiency possible with ALLIANCE and L-
ALLIANCE, and which has been successfully demonstrated on physical mobile robot
teams.

1.4 Organization of the Report

The organization of this report is as follows:
Chapter 2: Ezperimental Tfstbeds. This chapter describes the two experimental

testbeds used in my cooperative robot research: a cooperative robot simulator and a
team of real mobile robots.

Chapter 3: ALLIANCE: The Cooperative Robot Architecture. This chapter de-
scribes the fully distributed heterogeneous cooperative robot architecture ALLIANCE,
including the assumptions of the architecture and a general overview of the approach.
I present a formal model of the primary mechanism of ALLIANCE, called the moti-
vational behavior, and then provide proofs that, in certain situations, ALLIANCE is
guaranteed to allow the robot team to accomplish its mission. I also provide results
of implementing ALLIANCE on a team of physical mobile robots performing the
artificial hazardous waste cleanup mission.

Chapter 4: L-ALLIANCE: Improving Efficiency. This chapter describes an ex-
tended version of ALLIANCE, called L-ALLIANCE, that incorporates an on-line, dis-
tributed, dynamic parameter update mechanism that greatly improves the efficiency
of cooperative teams performing a mission composed of independent subtasks, while
preserving the fault tolerant characteristics of ALLIANCE. I investigate a number of
control strategies for imp:oving efficiency and present results from these studies. For
those cases in which the optimal solution can be computed, I compare the preferred
control strategy with the optimal result, demonstrating the high level of efficiency
that can be obtained with this control strategy. I then describe the formal model
that incorporates this control strategy into the motivational behaviors of each robot.

Chapter 5: Robot Awareness and Action Recognition. 7his chapter investigates
the importance of awareness - the knowledge a robot has about the current actions
of its teammates - presenting results from a study of the physical robots performing
the hazardous waste cleanup mission.

Chapter 6: Additional Implementations of ALLIANCE. This chapter discusses
additional experiments I performed either on physical mobile robots or in simulations
using ALLIANCE: a box pushing demonstration, a janitorial service mission, and a
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bounding overwatch mission.
Chapter 7: D(signing Control La-,os. This chapter investigates issues in the

design of cooperative control laws by examining a case study, Keep Formation, which
compares the types of control that are possible with varying degrees of local and
global knowledge.

Chapter 8: Rdated Cooperatif Mobilf Robot l'ork. This chapter reviews the
current state of the art, in cooperative mobile robot systems and relates the work
done previously with the research presented in this report. I also provide an analogy
between animal societies and current cooperative mobile robot work as an aid to
categorization of research.

Chapter 9: Summary and Conclusions. This chapter summarizes the main
contributions of this report and describes areas of future work.
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Chapter 2

Experimental Testbeds

To investigate issues of cooperative behavior, two experimental environments were
utilized in this research: a cooperative robot simulator and a heterogeneous team of
physical mobile robots.

The purpose of the simulation experiments was three-fold. First, the simulator
was used to to debug the intricacies of the ALLIANCE architecture and to test alter-
native strategies to its design. This type of debugging and exploration can be quite
difficult to perform on physical robots due to the time required to re-download code
to each robot, to recharge the robot batteries, to set up the experimental scenarios,
and to debug and correct robot mechanical and/or electronic failures. Second, the
cooperative robot simulator extended the scope of applications that could be investi-
gated by allowing the construction of a wide variety of robots with various mixtures of
sensors and effectors that are not currently available in our laboratory. I made ever-,
attempt, however, to keep myself honest by assuming only the existence of sensory
and effector devices that are available with current robot technology. And third, the
speed of the simulator provided the ability to accelerate "real-time", allowing me a
more favorable platform for statistical data collection for many types of experiments.

Of course, years of experience in mobile robot development have shown that ap-
proaches to robot control which work in simulated robot worlds are often not success-
ful when applied to real mobile robot teams due to unrealistic assumptions made in
the simulations [Brooks, 1991a]. It is therefore important when developing any robot
control paradigm to validate the proposed system on real, physical robots. Thus, I
also implemented cooperative tasks on our laboratory's team of heterogeneous mobile
robots.

The results of my experiments in both of these domains are reported throughout
this report. This chapter describes these two testbeds in some detail.

13
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Figure 2-1: A typical indoor environment created using the multi-robot simulator.

2.1 The Cooperative Robot Simulator

The original version of the cooperative robot simulator was developed in the MIT
Mobot Laboratory by Yasuo Kagawa. a visiting scientist from the Mazda Corporation.
I modified the internal mechaniL .rs of the original version extensively, however, to
improve its response time and lower its memory requirements significantly, and to
increase the available sensory and effector models. This simulator, written in object-
oriented Allegro Common Lisp version 1.3.2, runs in the Macintosh environment and
is designed to simulate indoor office-type environments. Figure 2-1 shows a typical
office environment which can be created using this simulator. This example is from
the janitorial service mission described in chapter 6.

The simulator provides most of the features one would expect in such a cooperative
robot simulator: the ability to create a simulated office environment with obstacles
and walls, to define sensory and effector devices, to define robots possessing any given
combination of sensors and effectors, and the ability for robots to communicate with
each other.
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The sensors that have been developed are a ranging sensor, an infrared beacon

detector, a compass. a inicroplione, an x, y positioning systenm. a pyroelectric sensor,
and a (lust, sensor (see [Yamamoto. 1993] for an example of a real-life dust sensor).
Each robot's movenient is commanded by velocity and turn angle values: additional
effectors imn)lemented are a floor vacuum, a garbage dumlper. and a duster arm that
can be extended either right, or left.'. Note that these additional effectors are not
modeled mechanically in any wa,, t1hey lnerely act as switches to turn some effect on
or off, based on the robot's currlt position and its proximity to obstacles of certain
types. Although all of the sens,M,, and effectors can have a. variable amount of random
noise added to them, a primar> disadvantage of this simulator is that no attempt has
been made to accurately model their error profiles. One must therefore keep this
in mind when evaluating behaviors that are generated with the simulator. In my
experiments. I typically used values of 20% random noise added to the sensors and
effectors.

Obstacle objects can be of two types - convex polyhedral objects and one-
dimensional wall-type objects. These objects can possess a number of additional
characteristics, such as the ability to emit an IR beacon or sound at a specified inten-
sity, or to possess a certain amount of dust, garbage, or heat. A nice feature of the
simulator is that objects can be moved around manually during the robot simulation,
thus mimicking a dynamic environment.

A major strength of the robot simulator is that the user-written robot control
programs are written in the Behavior Language2 [Brooks, 1990a], which is also the
programming language used in the real mobile robot experiments. This allows most
of the robot control code developed using the simulator to be easily ported to run
on an actual mobile robot. The main exception is, of course, the sensor and effector
interfaces, which will be different on a physical robot.

2.2 The Pool of Heterogeneous Robots

A primary goal of this research is to allow a human system designer to create new
teams of cooperative robots by selecting, from a pool of available robots, those robots
which have the proper mix of capabilities for the current application. To enable
the demonstration of this capability, I have composed a. pool of heterogeneous mobile
robots from which I can create various teams with differing group capabilities. Shown
in figure 2-2, the Mobot Laboratory's pool of heterogeneous robots consists of two

'These effectors were designed for the janitorial service mission, which is described in chapter 6.
2-The Behavior Language is a modified and extended version of the subsumption architecture

[Brooks, 1986] that. facilitates real-time robot control.
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types3 of mobile robots - three R-2s and one Genghis-lI - all of which were designed
and built by IS Robotics Corporation located in Somerville, Massachusetts.

It is important to note, however, that even though our laboratory has duplicate
copies of the R-2 robot, significant variations in the sensitivity and accuracy of their
sensors and effectors cause them to have quite different true capabilities. It is also
possible to modify the morphology of an individual robot in several ways, such as
installing a gripper attachment, that greatly affects a robot's capabilities. Thus, a
heterogeneous robot team can be composed that consists of only the R-2 type of
robot, since the robot behavior varies noticeably.

Of course, when working with specific mobile robots, one is limited in the appli-
cations that can be demonstrated by the physical limitations of the available robots.
Thus. the physical robot experiments described in this report. have been designed
specifically with the capabilities of the R-2s and Genghis-II in mind. The ALLIANCE
architecture, however, is independent of the specific robot platform on which it is im-
plemented.

The next, two subsections describe the capabilities of these robots, followed by a
description of the radio communication and positioning system that allows the robots
to send messages to each other and to determine their own current x, y position
relative to a global frame of reference.

2.2.1 R-2 Robots

Mechanical Design

Shown from four views in figure 2-3, the R-2 robot [IS Robotics, 1992b] is a small, fully
autonomous wheeled vehicle measuring 10 inches wide, 12.5 inches deep (including
the gripper), and 14 inches tall (including the radio communication and positioning
subsystem). The robot has two 3-inch diameter drive wheels that are driven differ-
entially at speeds up to 18 inches per second. Two caster wheels in the rear provide
stability. The R-2 also possesses a two degree of freedom parallel jaw gripper with a
3-inch maximum width, a 7-inch maximum lift, and a lifting capacity of two pounds.
Onboard rechargeable batteries provide 1400 mAb capacity at 14.4 volts; in practice,
this allows about 45 minutes of continuous operation. Three output devices - a
piezoelectric buzzer; a four-line. 16 character per line LCD display: and a white LED
lamp in the left finger - are available for determining the robot status. Normally,
one might think that distinguishing the robots from each other would be difficult,

'I should note here that the Mobot laboratory also possesses 20 R-1 robots, which are smaller
versions of the R-2, and which I had originally intended to use in these cooperative robot experiments.
Unfortunately, the radio communication system on the R-ls is incompatible with that. on the other
robots and could not be easily or cheaply upgraded.
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Figure 2-2: The pool of heterogeneous robots - three R-2s and one Genghis-II.

since they are all of the same type. However, identification of individual robots is
made easy on this team - each robot has its own color: GREEN, BLUE, and RED4 .

Sensors

The R-2 robot is equipped with several types of sensors. Eight infrared (IR) proximity
sensors are positioned at the tips of both fingers and along the sides and back of the

4 We also have a fourth assembled R-2, GOLD, and the parts to a fifth R-2 robot, PURPLE, but
incessant mechanical problems rendered them unusable.

Figure 2-3: Four views of the R-2 robot.
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robot. These IR sensors have an effective range of about 8 to 12 inches. Piezoelectric
bump sensors sensitive to both force and position are present around the base of
the robot for use in collision detection, and inside the fingers for use in measuring
gripping force. Shaft encoders are installed on the lift and grip motors and on the
drive wheels to enable velocity sensing. Also included are sensors to measure battery
current, battery voltage, and motor drive current. Two break beam sensors between
the fingers allow detection of objects between the fingers at either the front or at thie
rear of the gripper.

Computational Organization

To enable real-time control of the R-2, its computational functions are divided across
several onboard microprocessors [IS Robotics, 1992b. IS Robotics. 1993a] - a Mo-
torola 68332 master processor and five Motorola MC68HCl1 slave processors. All
of the processors, plus some hardware function cards, are linked together via a com-
mon backplane. The microprocessors communicate along this backplane based on the
Synchronous Serial Peripheral Interface facility provided by the MC68HCI .

The 68332 master processor executes the user's behavior language code and thus
controls the overall operation of the robot. It uses input received from the robot
sensors to send velocity commands to the two wheels and to send position commands
to the lift and grip motors. The 68332 processor resides on a board made by Vesta,
which is configured with 128K bytes of ROM for the operating system code and IM
byte of RAM for the user code. The 68332 also has 2K bytes of on-chip RAM. The
processor runs at 16.777 MHz.

The five MC68HC1 I slave processors are responsible for processing data from the
sensors and for controlling the actuators. The functionality of the robot is divided
across the five slave processors as follows:

1. Right and Finger Processor. controls the right drive wheel motor, the finger
gripper motor, and the LED lamp.

2. Left and Lift Processor. controls the left drive wheel motor and the lift, motor.

3. Radio Processor. controls the radio communication and positioning subsystem.

4. Status Processor. controls the LCD and buzzer output devices and monitors
the current and voltage sensors.

5. Proximity Processor. controls the infrared and bump sensors.

Each MC68HC11 has 2K of EEPROM that contains a sensor or motor driver, and
256 bytes of RAM.
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Figure 2-4: The Genghis-II robot.

The 68332 master processor is programmed by the user using Behaiior Languagf
code [Brooks, 1990a]. Software functions and macros are provided that allow the
user program to receive sensory feedback from the slave processors and to send motor
control commands to the appropriate slave.

The slave processors are programmed in M68HC11 assembly code and are designed
to respond to the master processor whenever requested, either by sending data to the
master or by receiving data from the master. The slave is not allowed to request
services from the master.

2.2.2 Genghis-II

Mechanical Design

Genghis-1I [IS Robotics, 1992a], shown in figure 2-4, is the industrialized version of
Genghis, which was built in the Mobot Laboratory at MIT under the direction of
Rodney Brooks [Angle, 1991, Brooks, 1989]. This robot is a small legged robot with
six two-degree-of-freedom (swing and lift) legs, and in a standing position measures
approximately 16 inches long, 11 inches wide, and 9 inches high (including the radio
positioning system). Each leg is approximately 6 inches long. Two output devices -
a piezoelectric buzzer and a series of 8 LEDs - are available for displaying the robot
status.

Two onboard battery sources provide separate power for the electronics and ra-
dio systems and the 12 motors. The electronics and radio systems are powered by
two non-rechargeable 6-volt lithium batteries in series: the motors are powered by
rechargeable NiCad batteries that provide approximately 45 minutes of operation.
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Sensors

Genghis-|I's sensor suite includes two whiskers at the front for obstacle detection,
force detectors on each leg, a passive array of infrared (pyroelectric) heat sensors,
three tactile sensors along the robot belly, four near-infrared sensors mounted on the
shoulders, and an inclinometer for measuring the pitch of the robot. The robot also
has 5 mode switches that can be utilized by the user to interface to Genghis-Il.

Computational Organization

Similar to the R-2, Genghis-It's onboard computational resources are divided across
a master processor and, in this case, four slave processors. All of these processors
are Motorola MC68HCI 1 microprocessors. In Genghis-II, the master processor is the
servo control processor, which also controls the force, whisker, and pyro sensors. The
functionality of the four slave processors is distributed as follows:

1. Behavior Processor:. runs the user's behavior language code.

2. Infrared Processor. controls the infrared and inclinometer sensors and the mode
switches.

3. Radio Processor:. controls the radio communication and positioning system.

4. Status Processor: controls the piezoelectric buzzer, the LED's, and the tactile
sensors along the robot belly.

As with the R-2, the Behavior processor is programmed by the user using the
Behavior Language. Software macros provide facilities for interfacing to the sensor
and motor drivers for robot control. The remainder of the processors are programmed
in M68HC11 assembly code.

2.2.3 Radio Communication and Positioning System

The radio communication and positioning system used with this pool of robots con-
sists of four parts [IS Robotics, 1993c, IS Robotics, 1993b]:

1. A radio transceiver unit attached to each robot.

2. An omnidirectional ultrasonic receiver attached to each robot.

3. A radio base station used to coordinate the radio waves and to control the
ultrasonic pingers.
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4. Two ultrasonic pingers (called pinge r A and pinyM B) used by the robots to
triangulate their own global position.

This system serves two purposes: (1) to allow the robots to communicate with each
other, and (2) to allow the robots to determine their own current global x, y position.

Communication

Designing a reliable communication system for a multi-robot team can be quite dif-
ficult. Ideally, the communication mechanism would allow robots to send messages
whenever they desire, to whomever they desire, without experiencing conflicts from
other communicating robots. In practice, this goal can be quite difficult to achieve,
especially when the robots must share the same communications medium. The radio
system designed for the robot teams used in this report prevents conflicts in the use
of the airwaves while still providing ample opportunity for robots to send messages
frequently.

This collision-free communication is accomplished by having the radio base station
coordinate the use of the radio waves by transmitting a message that awards a specific
robot a certain slice of time in which to broadcast a 10-byte message. The time slices
are determined by assigning each robot a unique identification number and having the
base station cycle through the robot identification numbers repeatedly. The current
implementation allows each robot to broadcast messages at a rate of once every three
seconds.

Positioning

Generating interesting cooperative behavior in robot teams is quite difficult to achieve
when using robots that are restricted to sensors with detection ranges less than their
own widths. To enhance the capabilities of the individual robots, it is extremely
helpful to endow them with the ability to have some sense of physical position, both
globally and with respect to other robot team members. This knowledge can greatly
extend the capabilities of the individual robots and the team as a whole, and provide
a framework from which interesting cooperative behavior can be generated. Thus,
this cooperative environment includes a positioning system giving the robot team this
increased capability.

As shown in figure 2-5, the primary robot work area measures 26 feet by 12 feet,
and is surrounded by a wall boundary detectable by the robots. The two ultrasonic
pingers, A and B, are placed 7.5 feet apart at the 51ýort end of the work area, and
emit approximately a 100-degree ultrasonic cone with a range of about 27 to 30 feet.
Each robot is told the baseline distance between the two pingers. This arrangement
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Figure 2-5: Physical layout of the radio communication and positioning system. The
rectangular area is the multi-robot work area.

of the pingers gives almost complete coverage in the work area by both pingers; those
areas not covered are the unshaded areas shown in figure 2-5.

The positioning system is coordinated by the radio base station, which broadcasts
a message to all robots that says, in essence, "listen for pinger A", while simultane-
ously commanding pinger A to send out an ultrasonic signal. Upon receipt of this
radio message, each robot listens for the ultrasonic signal, and then calculates its dis-
tance to pinger A based upon the velocity of sound in air. This is repeated for pinger
B, at which time the robots can calculate their own positions by using triangulation
and the known distance between the two pingers. If the robot does not detect a signal
from one of the pingers within a certain amount of time, a special value of -1 for
the range to that pinger is returned. The user's behavior language code can then
recognize when it has incomplete information on its position and act accordingly. In
my experiments, these dead zones have not been a problem because the robots back
away from the surrounding wall obstacle in such a way that they return to an area
receiving both sonar pings fairly quic:ly.

This positioning system is quite accurate and gives the robots the ability to localize
their position to within 1/2 inch when stationary. The position is somewhat noisy
when the robot is moving, however, due to interference from the robot motors, giving
a practical accuracy of about 6 inches. The position updates occur once every 600
milliseconds.



2.3. SIUMMARY 23

2.3 Summary

In this chapter, 1 have described the two primary testheds used iii this report for
studying alternative approaches to cooperative control - the cooperative robot sim-
ulator and a pool of physical robots. My experience in researching this report had
led me to the conclusion that both simulated robot and physical robot test beds are
vital to the research of general cooperative control issues such as those studied in thuis
report. Whereas the physical robots kept my research firmly rooted in the real world
and prevented the use of unrealistic assuihptions, the simulated robots provided the
ability to thoroughly investigate the characteristics of the ALLIANCE architecture
through variation of robot capabilities and robot applications, and through collection
of large amounts of data on team performances that would have been impossible to
collect on any given physical robot team. Neither of these testbeds could provide
all of these features alone. In the following chapters, I describe the results of the
ALLIANCE implementations which use these testbeds.
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Chapter 3

ALLIANCE: The Cooperative
Robot Architecture

This chapter describes the novel fault tolerant control architecture. ALLIANCE',
which enables heterogeneous mobile robot cooperation. I begin by discussing the
assumptions that were made, and those that were explicitly not made, in developing
this architecture, and then give the formal definition of the problem addressed by
ALLIANCE. I provide an overview of the approach taken in ALLIANCE, and then
discuss the details of the primary action selection mechanism of the architecture -
the motivational behavior - along with a formal model of the mechanism. I then
provide proofs that, in certain situations, ALLIANCE is guaranteed to allow the robot
team to accomplish its mission. I describe the results of implementing ALLIANCE on
a physical robot team performing the hazardous waste cleanup mission introduced in
chapter 1. I conclude this chapter by returning to the design requirements described
in chapter 1 and discussing how ALLIANCE meets these requirements.

3.1 Assumptions Made in ALLIANCE

In the design of any control scheme, it is important to make explicit those assumptions
underlying the approach. I list here the assumptions made in ALLIANCE, and then

'I chose the name ALLIANCE to emphasize the analogy between the cooperation exhibited by
robots under this architecture and the cooperation exhibited by groups of political nations which
form an alliance for the mutual benefit of all the participants. In a political alliance, individual
nations are able to survive to some extent without other nations; yet they form an alliance in order
to achieve more as a group than as individuals. Likewise, in this cooperative control architecture,
individual robots are able to survive and perform useful tasks completely on their own; yet, by
joining with other robots, the team is able to accomplish more as a group than is possible with
individual robots alone.

25
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discuss the implications of these assumptions.

I assume:

1. The robots on the team cati detect the effect of their own actions. with some
probability greater than 0.

"2. Robot, ri can detect:

"* the actions of other team members for which ri has redundant capabilities,
with some probability greater than 0; these actions can be detected through
any available means, including explicit broadcast, communication.

"* the effect of the above actions.

3. The robots share a common language.

4. Robots on the team do not lie and are not. intentionally adversarial.

Since robots that have no idea how well they are executing their task cannot ex-
hibit much robustness, flexibility, reliability, or coherence, I make the first assumption
to ensure that robots have some measure of feedback control and do not perform their
actions purely with open-loop control. However, I do not, require that robots be able
to measure their own effectiveness with certainty, because I realize this rarely happens
on real robots. As we shall see in the following sections, ALLIANCE provides mech-
anisms to facilitate detection of robot failures and difficulties in task performance.

The second assumption deals with the problem of action recognition - the abil-
ity of a robot to observe and interpret the behavior of another robot. Without the
ability for robots to perform action recognition, it is impossible to create cooperative
teams. However, it is not required that robots determine these actions through pas-
sive observation, which can be quite difficult to achieve (see section 5.1 for a further
exploration of this issue). Instead, it is quite acceptable for robots to learn of the
actions of their teammates through an explicit communication mechanism, whereby
robots broadcast information on their current activities to the rest of the team. How-
ever, I also recognize that communication can be disrupted, so ALLIANCE provides
methods of creating robust and reliable cooperative behavior even in the absence of
complete knowledge of the actions of other teammates.

It is important to note that in the second assumption I distinguish between the
detection of the current actions of team members and the detection of the effects
of those actions. I make this distinction because I want robots to respond not only
to the intentions of those teammates, but also to the environmental changes caused
by the actions of those teammates. Thus, robots should allow team members to
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continue their tasks only if they demonstrate their abilitv to suc-essfuliv accomplish
those tasks through their effect. on the world.

This second assumption implies that the third assumpt*Ion must be true --- that
is, that, the robots must share an unambiguous common language, to the extent that
their capabilities overlap. whether they interpret the actions of other robots passively
or actively. If the actions are interpreted passively, the robots must in essence share
a common body language, whereas the use of an explicit communication mechanism
implies the presence of a, more traditional language, including a vocabulary and usage
rules. Of course, the robots need not, share a language concerning capabilities that
are not shared by other robots.

Finally, I assume that the robots are built. to work on a. team, and are neither in
direct competition with each other, nor are attempting to subvert the actions of their
teammates. In particular, it is important in ALLIANCE that when robots broadcast
information on their current activities, they can be assumed to be telling the truth.
Although at a low level conflicts may arise due to a shared workspace, for example,
I assume that at a high level the robots share compatible goals.

3.2 Assumptions Not Made in ALLIANCE

The ALLIANCE architecture explicitly does not make certain assumptions that are
often made in cooperative architectures addressing a similar application domain. Enu-
merating these "non-assumptions" helps clarify the differences between ALLIANCE
and other architectures for heterogeneous robot cooperation.

ALLIANCE does not make the following assumptions:

1. The communications medium is guaranteed to be available.

2. The robots possess perfect sensors and effectors.

3. Whenever a robot fails, it can communicate its failure to its teammates.

4. A centralized store of complete world knowledge is available.

A primary philosophy in the design of ALLIANCE is that the cooperative team
should be able to continue to function as much as possible even in the midst of dynamic
changes in the abilities of the robot team members, or in the state of the environment.
Because of this philosophy, I want the robots in ALLIANCE to be able to function
to some extent even when their communications medium has failed. Naturally, when
communication is available, robot teams should take advantage of it; however, I
do not want the team to experience total breakdown when communication becomes
unavailable. (See [Arkin et al., 1993] for a similar philosophy towards communication.)
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For similar reasons, I likewise do not assume that the sensors and effect ors of the
robot team members are perfect. Robots must have some abilitv to monitor their
own progress and the progress of their teammates. However. 1 (1o not carry this
assumption to the extreme position in which I assume that. a robot can always detect
its own failure and will always be able to communicate its failure to the other robots
on the team. Thus. robots should be somewhat skeptical of the ability and claims of
other robots to accomplish certain tasks unless those robots demonstrate their ability
through the world to actually achieve those tasks.

Finally, I cannot assume that robots have access to some centralized store of
world knowledge, or that some centralized agent is monitoring the state of the entire
robot environment and can make controlling decisions based upon this information.
Clearly, once robots begin to depend upon any type of centralized control or cen-
tralized global information, they become much more vulnerable to failures of that.
centralized agent. Additionally, the centralized store or source of control can be a
bottleneck that severely constrains the abilities of the robot team.

3.3 Formal Problem Definition

It is important to note here that this report deals strictly with cooperative robot
missions that are composed of loosely coupled subtasks that are largely independent
of each other. By "largely" independent, I mean that tasks can have fixed ordering
dependencies, but they cannot be of the type of "brother clobbers brother" [Sussman,
19731, where the execution of one task required by the mission undoes the effects
of another task required by the mission. Even with this restriction, however, this
report covers a very large range of missions for which cooperative robots are useful.
As we shall see in this and later chapters, a wide variety of applications have been
implemented and are reported that fall into this domain of loosely coupled. largely
independent subtasks.

I now define formally the problem addressed in this report. Let the set R =
{rl, r2 , ... , rn} represent the set of n heterogeneous robots composing the cooperative
team, and the set T = { task1 , task2 .-- ,taskm,} represent rn independent subtasks
which compose the mission. I use the term high-level task-achieving function to
correspond intuitively to the functions possessed by individual robots that allow the
robots to achieve tasks required in the mission. These functions map very closely
to the upper layers of the subsumption-based control architecture [Brooks, 1986].
In the hazardous waste cleanup mission, the high-level functions are: find-initial-
final-locations, move-spill, and report-progress. Table 3.1 gives examples of what
I consider to be the high-level task-achieving functions of a number of previously
reported robots. In the ALLIANCE architecture, the control code of each robot
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Robot High-Level Functions
Allen [Brooks, 1986] W¥ander
Attila/Hannibal [Ferrell. 1993] Keep walking
Genghis [Brooks, 19891 Keel) walking
George/HARV [Arkin, 1990] Reactively navigate
Herbert [Connell, 1989] Collect enpty soda cans
Hilare [Giralt. (t al., 198:3] Map office environment
Polly [Horswill, 1993] Give 7th floor Al Lab tours
Rocky III [Miller ft al.. 1992] Search for soft soil; acquire soil sample:

return sample to home
Rocky IV [Gat. et al., 1993] Collect soil sample; chip rocks;

deploy instruments; return sample to home
RPV [Bonasso. 1991] Reactively navigate underwater
Squirt [Flynn (t al., 19891 Eavesdrop
Toto [Mataric, 1992b] Map office environment; go to goal

Table 3.1: High level task-achieving functions of various robots.

is organized into groups of behaviors called behavior sets, each of which supplies the
robot. with a high-level task-achieving function. Thus, in the ALLIANCE architecture,
the terms high-level task-achieving function and behavior set are synonymous.

I refer to the high-level task-achieving functions, or behavior sets, possessed by
robot ri in ALLIANCE as the set. Ai = {ail,ai2 , ... }. Since different robots may have
different ways of performing the same task, we need a way of referring to the task
a robot is working on when it activates a behavior set. Thus, I define the set of n
functions {hl(alk), h2(a2k),.... h,(ank)}, where hi(aik) returns the task in T that robot
ri is working on when it activates behavior set aik.

I now define the notions of goal-relevant capabilities and task coverage.

Definition 1 The goal-relevant capabilities of robot ri. GRCi. are given by the set:

GRCi = {aijlhi(aij) E T}

where T is the set of tasks required by the current mission.

In other words, the capabilities of robot ri that are relevant to the current mission
(i.e. goal) are simply those high-level task-achieving functions which lead to some
task in the current mission being accomplished.

The term coverage has been used in a number of contexts, such as DNA physical
mapping in computational biology [Lander and Waterman, 1988] and in multiple
robotics applications dealing with spatial distribution of robots [Gage, 1993]. Here,
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I use the term task cot,'ragc to give a measure of the number of capabilities on the
team that may allow some team member to achieve a given task. This is the measure
that is used by human (or automated) designers to collect robots from the available
pool of robots to form a team with the required capabilities to accomplish a given
mission. However, we cannot always predict robot failures: thus, at any point during
a mission, a robot may reach a state from which it cannot achieve a task for which it
has been designed. This implies that the expected task coverage for a given task in
a mission may not always equal the true task coverage once the mission is underway.

Definition 2 Task coverage is given by:

task-coveragc( taskk) n E 1 if(hi(aij)=taskk) }
0 otherwisei 1 j

Note that if any one robot has more than one way to accomplish taskk. that
redundancy is included in the task .-overage value. An interesting side-effect of this
definition is that in homogeneous robot teams, the task coverage for all tasks in T is
always a positive integral multiple of the number of robots n. That is,

Vk.3(c E N).task._covcrage(taskk) = c X n

where N is the set of natural numbers. Note that this is not a sufficient condition
for homogeneity, since the n robots could have n different ways of accomplishing task
taskk.

The task coverage measure is useful for composing a team of robots to perform
a mission from the available pool of heterogeneous robots. At a minimum, we need
the team to be composed so that the task coverage of all tasks in the mission equals
1. This minimum requirement ensures that, for each task required in the mission,
a robot is present that has some likelihood of accomplishing that task. Without
this minimum requirement, the mission simply cannot be completed by the available
robots. Ideally, however, the robot team is composed so that the task coverage for
all tasks is greater than 1. This gives the team a greater degree of redundancy
and overlap in capabilities, thus increasing the reliability and robustness of the team
amidst individual robot failures. Although it is often most useful to have a uniform
task coverage across the mission, some missions may include a subset of tasks that
are of particular importance; this subset of tasks may therefore require higher levels
of task coverage than the remainder of the tasks.

Within this application domain, two key problems must be addressed. First, a
control architecture must be developed that allows robots on these cooperative teams
to properly select tasks during the mission such that the collective actions of the team
lead to mission completion. This is the problem that the cooperative architecture
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ALLIANCE addresses. Second, a control architecture must be developed that not
only allows a robot team to comnplete its mission. but 1o complete it fJ.ici( itly. The
enhanced cooperative architecture -:ALLIAN('E. which is discussed ill chapter .1
addresses this problem.

3.4 Overview of ALLIANCE

ALL! "'E is a fully distributed architect ure for fault tolerant, heterogeneous robot
cool) . that utilizes adaptive action selection to adcieve cooperative control. UTn-
der thi, architecture, the robots possess a variety of high-level task-achieving functions
that they can perform during a mission, and must at all times select an appropri-
ate action based on the requirements of the mission, the activities of other robots,
the current environmental conditions, and their own internal states. Adaptive action
selection is achieved through the selfish interests of individual robots, modified by
their analyses of the current, and previous performance of other team members. The
performance of a robot is determined solely by how that robot affects the world, and
is not dependent upon explicit, often artificial skill metrics.

Adaptive action selection is facilitated in this architecture by designing the robots
to be somewhat selfish and lazy. They are selfish in that they only do what they
"want" 2 to do and what they "think" is in their own best interests, as determined
by their motivations and the environment. The best interests of a robot are defined
from the local point of view of that robot, not from some omniscient onlooker with
a global view. These interests are defined very simply as the action(s) the robot is
most motivated to perform at each point in time. The purpose of this approach is to
maintain a purely distributed cooperative control scheme which affords an increased
degree of robustness; since individual robots are always fully autonomous, they have
the ability to perform useful actions even amidst the failure of other robots.

The robots in this architecture are lazy in the sense that, although they want
certain tasks to be accomplished, they do not care if some other robot performs
those tasks for them. For example, a baggage-handling robot may want both (1) the
baggage to be removed from an airplane, and (2) the removed baggage to be placed
on a cart. However, it is fine with this robot if another robot does one or both of

2Throughout this report, I use terms that seem to attribute intent, cognition, and a will to the
robots designed under the ALLIANCE and L-ALLIANCE architectures - terms such as "think",
"want", "know", "believe", "decide", and "forget". These qualities are used solely to simplify the
discussion and should be viewed strictly as characteristics imposed by an observer watching the
behavior of the robots; they usually do not reflect the internal organization of the robots. (See
[Braitenberg, 1984] for an interesting discussion of this distinction.) The robots in ALLIANCE
explicitly do not use belief systems typical in many multi-agent systems.
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these tasks, as long as the tasks get done. This characteristic prevents the needless
waste of energy due to replication of effort.

In ALLIANCE, individual robots are designed using a behavior-based approach
[Brooks, 1986]. Under the behavior-based construction, as shown in figure 3-1. a
number of task-achieving behaviors are active simultaneously. each receiving sensory
input and controlling some aspect of the actuator output. The lower-level behaviors.
or competences, correspond to primitive survival behaviors such as obstacle avoidance.
while the higher-level behaviors correspond to higher goals such as map building and
exploring. The output of the lower-level behaviors can be suppressed or i1hibited by
the upper layers when the upper layers deem it necessary. When the output of one
laver, L1 , is inhibited by another laver, L2, Li's output is prevented from reaching its
destination. When layer Li's output is suppressed by Layer L2. not only is Li's output
prevented from reaching its destination, but it is also replaced by an output from L2 .
Within each laver of competence may be a number of simple modules interacting
via inhibition and suppression to produce the desired behavior, as shown in figure 3-
2. (In this and the previous figure, the small circles indicate either inhibition or
suppression of the behavior outputs. When we want to distinguish between the two
types of interaction, we place an I'- within the circle to indicate inhibition, and an
"S" to indicate suppression.) This approach has been used successfully in a number
of robotic applications, several of which are described in [Brooks, 1990b].

Extensions to this approach are necessary, however, when a robot must select
among a number of competing actions - actions which cannot be pursued in paral-
lel. Unlike typical behavior-based approaches, ALLIANCE delineates several behavior
sets that are either active as a group or hibernating. Figure 3-3 shows the general
architecture of ALLIANCE and illustrates three such behavior sets. Each behavior
set aij of a robot ri corresponds to those levels of competence required to perform
some high-level task-achieving function. Because of the alternative goals that may be
pursued by the robots, the robots must have some means of selecting the appropriate
behavior set to activate. This action selection is controlled through the use of moti-
vational behaviors, each of which controls the activation of one behavior set. Due to
conflicting goals, only one behavior set should be active at any point in time. This
restriction is implemented viz cross-inhibition of behavior sets, represented by the
arcs at the top of figure 3-3. in which the activation of one behavior set suppresses
the activation of all other behavior sets. However, other lower-level competences such
as collision avoidance may be continually active regardless of the high-level goal the
robot is currently pursuing. Examples of this type of continually active competence
are shown in figure 3-3 as layer 0. layer 1. and layer 2.



3.4. OVERVIEW OF ALLIANCE 3:3

"Layer 3

4 Layer 2

4 Layer 1

Sensors Layer 0 Actuators

Figure 3-1: The organization of a typical behavior-based architecture. Each laver is
responsible for some level of competence of the robot. For example, a lower laver
(Layer 0) might provide obstacle avoidance capabilities, while an upper layer (Laver
3) might provide a map-building competence. The circles indicate inhibition or sup-
pression of lower layer outputs by upper layers. Typically, either an "I" or an "S" is
placed within each circle to distinguish between inhibition and suppression of outputs.
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Figure 3-2: Within each layer of competence are usually several simple modules
(dashed rectangles) interacting to produce the desired behavior. The circles indicate
suppression or inhibition of module outputs.
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The ALLIANCE Architecture

S~cross-inhibition

Inter-Robot Motivational [MotivationallMtvtoa
Communi- I Behavior or Behavior

cation

Behavior Behavior Behavior
" Set 0 -m, set 1 Set 2

Actuators

Sensorsl

Figure 3-3: The ALLIANCE architecture, implemented on each robot in the co-
operative team, delineates several behavior sets, each of which correspond to some
high-level task-achieving function. The robot must have some mechanism allowing
it to choose which high-level function to activate; the primary mechanism providing
this ability is the motivational behavior. Within each behavior set are a number of
layers of competence organized like those shown in figure 3-1, and within each layer of
competence are a number of simple interacting modules as shown in figure 3-2. The
symbols in the current figure that connect the output of each motivational behavior
with the output of its corresponding behavior set (vertical lines with short horizontal
bars) indicate that a motivational behavior either allows all or none of the outputs
of its behavior set to pass through to the robot's actuators. The non-bold, single-
bordered rectangles correspond to individual layers of competence that are always
active.
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3.5 Motivational Behaviors

The primary mechanism for achieving adaptive action selection in this architecture is
the moti,ational behatlior. At all times during the mission, each motivational behav-
ior receives input from a number of sources. including sensory feedback, inter-robot
communication, inhibitory feedback from other active behaviors, and internal moti-
vations called robot impatience and robot acquicsccnc(. The output of a motivational
behavior at a given point in time is the activation level of its corresponding behavior
set, represented as a non-negative number. When this activation level exceeds a given
threshold, the corresponding behavior set becomes active. Once a behavior set is ac-
tivated, other behavior sets in that robot are suppressed so that only one behavior
set is active in an individual robot at a time.

Intuitively, a motivational behavior works as follows. Robot ri's motivation to
activate any given behavior set, aij, is initialized to 0. Then over time, robot ri's
motivation rmn j(t) to perform a behavior set aij increases at a fast rate of impatience
as long as the task corresponding to that behavior set (i.e. hi(aij)) is not being
accomplished, as determined from sensory feedback. For example, in the hazardous
waste cleanup mission a robot with the ability to move toxic waste should have an
increasing motivation to move that waste as long as the waste remains at the initial
spill location. On the other hand, if the sei~sory feedback indicates that the behavior
set is not applicable, then the motivation to perform that behavior set should go to
zero. Thus, the waste-moving robot should not be motivated to move waste if it has
already been moved, as evidenced through the robot's sensors.

Additionally, the robots should be responsive to the actions of other robots, adapt-
ing their task selection to the activities of team members. Thus, if a robot ri is aware
that another robot rk is working on task hi(aij), ri should be satisfied for some period
of time that that task is going to be accomplished even without its own participation
in the task, and thus go on to some other applicable action. Robot ri's motiva-
tion to activate behavior set aij continues to increase, but at a slower rate. This
characteristic prevents robots from replicating each other's actions and thus wasting
needless energy. Of course, detecting and interpreting the actions of other robots is
not a trivial problem, and often requires perceptual abilities that are not yet possible
with current sensing technology (see section 5.1). As it stands today, the sensory
capabilities of even the lower animals far exceed present robotic capabilities. Thus,
to enhance the robots' perceptual abilities, this architecture utilizes a simple form
of broadcast communication to allow robots to inform other team members of their
current activities, rather than relying totally on sensing through the world. At some
pre-specified rate, each robot ri broadcasts a statement of its current action, which
other robots may listen to or ignore as they wish. No two-way conversations are
employed in this architecture.
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Each robot is designed to be somewhat impatient, however, in that a robot ri
is only willing for a certa.l., period of time to allow the communicated messages of
another robot. to affect its own motivation to activate a givei) behavior set. Continued
sensory feedback indicating that a task is not getting accomplished thus overrides the
statements of another robot that it is performing that task. This characteristic allows
robots to adapt to failures of o'her robots, causing them to ignore the activities of
a robot that is not successfully completing its task. As an example of this feature,
consider two robots, RED and BLUE. that want to locate a hazardous waste spill in
a room. RED responds first to the need to locate the spill and begins broadcasting
its actions of spill localization. BLUE is then satisfied that the spill will be located
and sits patiently waiting on that task to be completed. However, assume that RED
experiences a mechanical failure that prevents it from successfully locating the spill.
In the meantime. BLUE's impatience to locate the spill has been increasing because
its sensory feedback indicates the task still needs to be performed. Initially, this
impatience increased at a slow rate due to the communication from RED. After a
period of time, however, the impatience begins to increase at a faster rate because
RED does not demonstrate its ability to accomplish that task. Eventually BLUE's
motivation to activate its find-spill behavior set passes the threshold of activation and
BLUE proceeds to locate the spill itself. In this manner, impatience helps robots to
adapt to dynamic changes in the environment or in the actions or failures of other
robots.

A complementary characteristic in these robots is that of acquiescence. Just as the
impatience characteristic reflects the fact that other robots may fail, the acquiescence
characteristic indicates the recognition that a robot itself may fail. This feature
operates as follows. As a robot ri performs a task, its willingness to give up that task
increases over time as long as the sensory feedback indicates the task is not being
accomplished. As soon as some other robot rk indicates it has begun that same task
and ri feels it (i.e ri) has attempted the task for an adequate period of time, the
unsuccessful robot ri gives up its task in an attempt to find an action at which it is
more productive. However, even if another robot rk has not taken over the task, robot,
ri may give up its task anyway if the task is not completed in an acceptable period
of time. This allows ri the possibility of working on another task that may prove to
be more productive rather than becoming stuck performing the unproductive task
forever.

With this acquiescence characteristic, therefore, a robot is able to ada,1 L its actions
to its own failures. This is illustrated by continuing the previous example - once
BLUE announces its activity to localize the spill, RED acquiesces that task to BLUE
if RED has attempted the task for a sufficient length of time without success. Once
again, this prevents the replication of effort that leads to the use of excessive energy.

The design of the motivational behaviors also allows the robots to adapt to unex-
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pected environmental changes which alter the sensory feedback. The need for addi-
tional tasks cani suddenly occur, requiring the robots to perform additional work, or
existing environmental conditions can disappear and thus relieve the robots of certain
tasks. In either case, the motivations fluidly adapt to these situations, causing robots
to respond appropriately to the current environmental circumstances.

3.6 Discussion of Formal Model of ALLIANCE

Now that the basic philosophy behind the ALLIANCE architecture has been pre-
sented, let us look in detail at how this philosophy is incorporated into the moti-
vational behavior mechanism by examining a formal model of the motivational be-
havior. As these details are discussed, a number of parameters are introduced that
are included in the formal model of ALLIANCE. For now, however, the question of
determining the proper parameter settings is deferred so that I can convey the general
framework within which cooperative control is achieved. I return to the important
issue of determining these proper parameter settings in chapter 4, which discusses the
learning enhancement to ALLIANCE. I also note that all of the implementations of
this model have been accomplished using features of the Behavior Language [Brooks,
1990a], in both the physical robot experiments (hazardous waste cleanup mission
and box-pushing demonstration) and in the simulated robot experiments (janitorial
service mission and bounding overwatch mission).

In this section I first discuss the threshold of activation of a behavior set, and then
describe the five primary inputs to the motivational behavior. In this discussion, it is
helpful to keep in mind the definition of the hi(aij) functions defined in section 3.3. I
conclude this section by showing how these inputs are combined to determine the cur-
rent level of motivation of a given behavior set in a given robot. Refer to appendix A
for a summary of the ALLIANCE formal model3 .

Threshold of activation

The threshold of activation is given by one parameter, 0. This parameter determines
the level of motivation beyond which a given behavior set will become active. Al-
though different thresholds of activation could be used for different behavior sets and
for different robots, in ALLIANCE I assume that one threshold is sufficient since the
rates of impatience and acquiescence can vary across behavior sets and across robots.

'The model described in this section and in appendix A is an updated version of that provided
in [Parker, 1992].
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Sensory feedback

The sensory feedback provides the motivational behavior with the information neces-
sary to determine whether its corresponding behavior set needs to be activated at a
given point during the current mission. Although this sensory feedback usually comes
from physical robot sensors, in realistic robot. applications it is not always possible
to have a robot sense the applicability of tasks through the world - that is, through
its sensors. Often, tasks are information-gathering types of activities whose need is
indicated by the values of programmed state variables. For example, in the hazardous
waste cleanup mission, the robots are first required to find the location of the spill.
However, they do not have a physical sensor that provides binary "found/not found"
feedback to indicate whether the spill has been located. Instead, the robot maintains
a memory flag which indicates the need to find the spill. This value is updated by the
robot when it finds the spill, or when a communicated message from another robot
announces the spill location. The value of the memory location, therefore, serves as
a type of virtual sensor which serves some of the same purposes as a physical sensor.

At times, it is quite possible that the sensory feedback provides erroneous infor-
mation to the robot. This erroneous information can lead the robot to assume that
a task needs to be executed when, in fact, it does not (false positive), or that a
task does not need to be performed when, in fact, it does (false negative). Although
higher task coverages and redundancy in individual robot sensors can help reduce this
problem, at some point the levels of redundancy become exhausted, leading to robot
failure. Thus, sensory failures as well as effector errors can lead to the team's failure
to accomplish its mission.

I define a simple function to capture the notion of sensory feedback as follows:

1 if the sensory feedback in robot ri at time t
sensory-feedbackij(t) = indicates that behavior set aij is applicable

0 otherwise

Note that this use of sensory feedback serves the same purpose as "precondition
lists" in traditional planning systems, such as STRIPS [Fikes and Nilsson, 19711, or in
situated agent planning systems, such as Maes' spreading activation networks [Maes,
1989]. In these planning systems, the precondition lists are collections of symbolic
state descriptions that must hold true before a given action can be performed. One
could impose a similar symbolic description on the required sensory feedback of each
motivational behavior in ALLIANCE to make the environmental requirements of
behavior set activation more explicit.
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Inter-robot communication

The inter-robot broadcast, communication mechanism utilized in ALLIANCE serves a
key role in allowing robots to determine the current actions of their teammates. As I
noted previously, the broadcast, messages in ALLIANCE substitute for more complex
passive action interpretation, or action recognition, which is quite difficult to achieve
(see section 5.1).

Two parameters are utilized in ALLIANCE to control the broadcast communica-
tion among robots: pi and Ti. The first parameter, pi. gives the rate at which robot ri
broadcasts its current activity. The second parameter, ri, provides an additional level
of fault tolerance by giving the period of time robot ri allows to pass without receiving
a communication message from a specific teammate before deciding that that team-
mate has ceased to function. While monitoring the communication messages, each
motivational behavior aij of robot ri must also note when a team member is pursuing
task hi(aij). For example, in the hazardous waste cleanup task, the motivational
behavior controlling the report-progress behavior set remembers the identification of
any other robot that is currently pursuing the task of reporting the team's progress.
However, this motivational behavior ignores robot messages concerning any other
task, since those tasks are controlled by other motivational behaviors.

To refer to this type of monitoring in the formal model, the function commn..received
is defined as follows:

1 if robot ri has received message from

Comm -received (i, k, j, t 1. t 2 ) robot rk concerning task hi(aij) in the
c I, time span (t1, t 2), where t1 < t 2

0 otherwise

Suppression from active behavior sets

When a motivational behavior activates its behavior set, it simultaneously begins
inhibiting other motivational behaviors within the same robot from activating their
respective behavior sets. At this point, a robot has effectively "selected an action".
The first motivational behavior then continues to monitor the sensory feedback, the
communication from other robots, and the levels of impatience and acquiescence to
determine the continued need for the activated behavior set. At some point in time,
either the robot completes its task, thus causing the sensory feedback to no longer
indicate the need for that behavior set, or the robot acquiesces the task either to
another robot or because the robot is giving up on itself. In either case, the need
for this behavior set eventually goes away, causing the corresponding motivational
behavior to inactivate this behavior set. This, in turn, allows another motivational
behavior within that robot the opportunity to activate its behavior set.
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One additional detail has to be handled here to avoid problems when two or
more motivational behaviors share exactly the same rate of impatience and which
activate at the same instant. Although this situation is unlikely, if it ever occurs it
can lead to the robot thrashing between the state in which multiple behavior sets
are active and the idle state4 . To remedy this potential problem, a fixed priority
among behavior sets is established, with the higher-priority behavior set -'winning"
in the case of simultaneous behavior set activations. This is implemented by treating
the suppression across motivational behaviors as a message that includes the priority
of the suppressing behavior set. If a motivational behavior receives a suppression
message after it has activated its behavior set, it compares its own priority with
that of the suppression message. If it discovers that its own priority is lower than
that indicated in the suppression message, it deactivates its behavior set. In the
formal model, however, I ignore this detail and simply refer to the cross-behavior set
suppression with the following function:

0 if another behavior set aik is active, k - j, on
activity.suppressionij(t) = robot ri at time t

1 otherwise

This function says that behavior set aij is being suppressed at time t on robot ri
if some other behavior set aik is currently active on robot ri at time t.

Robot impatience

Three parameters are used to implement the robot impatience feature of ALLIANCE:
)ij(k,t), bslowij(k,t), and 6_fastij(t). The first parameter, oij(k,t), gives the time

during which robot ri is willing to allow robot rk's communication message to affect
the motivation of behavior set aij. Note that robot ri is allowed to have different
0 parameters for each robot, rk, on its team, and that these parameters can change
during the mission (indicated by the dependence on t). This allows ri to be influenced
more by some robots than others, perhaps due to reliability differences across robots.

The next two parameters, 6_slowij (k, t) and 6_fastii(t), give the rates of impatience
of robot ri concerning behavior set aij either while robot rk is performing the task
corresponding to behavior set aij (i.e. hi(aij)) or in the absence of other robots
performing the task hi(aij), respectively. I assume that the fast impatience parameter
corresponds to a higher rate of impatience than the slow impatience parameter for
a given behavior set in a given robot. The reasoning for this assumption should be
clear - a robot ri should allow another robot rk the opportunity to accomplish its

4The robot returns to the idle state after multiple simultaneous behavior set. activations because
all the active behavior sets send suppression messages, thus causing all the behavior sets to be
deactivated.
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task before becoming impatient with rIV however, there is no reason for ri to remaini
idle if a task remains undone and no other robot is attemnpting that task.

The question that now arises is the following: what slow rate of imlpatience does
a motivational behavior controlling behavior set ai, use when inore than one other
robot is performing task hi(aij)? The method used in ALLIANCE is to increase the
motivation at a rate that allows the slowest robot r.U still under its allowable time
oij(k, t) to continue its attempt. This seems reasonable, since ri would have allowed
this slowest robot the time oij(k.t) to perform the task if it were the only robot
performing task hi(aij).

The specification of when the impatience rate for a behavior set a j should grow
according to the slow impatience rate and when it should grow according to the fast
impatience rate is given by the following function:

mink(6_slou, ij(k. t)) if (commn receved(i, k,j. t - ri, t) = 1)
impatienceij (t) =and

(comrn received(i, k, j, O, t - Pij( (k, t)) = 0)

6_fastij( t) otherwise

Thus, the impatience rate will be the minimum slow rate, 6_slouwoj(k. t), if robot
ri has received communication indicating that robot rk is performing the task hi(aij)
in the last ri time units, but not for longer than Oij(k, t) time units. Otherwise, the
impatience rate is set to £.fastij(t).

The final detail to be addressed is to cause a robot's motivation to activate be-
havior set aij to go to 0 the first time it hears about another robot performing task
hi(aij). This is accomplished through the following:

S0 if 3k.((comm_rcceived(i,k,jt - 6t, t) = 1) and
impatience -reset ij (t) = (comm -eceived(i, k, j, 0, t - .5t) = 0)),where 6t = time since last communication check

I otherwise

This reset function causes the motivation to be reset to 0 if robot ri has just
received its first message from robot rk indicating that rk is performing task hi(aij).
This function allows the motivation to be reset no more than once for every robot team
member that attempts task hi(aij). Allowing the motivation to be reset repeatedly by
the same robot would allow a persistent. yet failing robot to jeopardize the completion
of the mission.
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Robot acquiescence

Two parameters are used to implement the robot acquiescence characteristic of AL-
LIANCE: c'jj(t) and Aij(t). The first parameter, ý'i.i(f), gives the time that robot ri
wants to maintain behavior set aij activation before yielding to another robot. The
second parameter, Aij(t). gives the time robot ri wants to maintain behavior set ai.
activation before giving up to possibly try another behavior set.

The following acquwsc.nc( function indicates when a robot has decided to acqui-
esce its task:

0 if [(behavior set ai of robot, ri has been active for more
than ',j(1) time units at time t) and
(3x.comm...reccii.ed(i , x, ,i - T, I) " 1)]

acquicsc;cnccjj(t) = or
(behavior set aij of robot ri has been active for more
than Aij(t) time units at time t)

1 otherwise

This function says that a robot ri will riot acquiesce behavior set aij until one of
the following conditions is met:

"* ri has worked on task hi(aij) for a length of time V•ij(t) and some other robot
has taken over task hi(aij)

"* ri has worked on task hi(aij) for a length of time Aij(t)

Motivation calculation

All of the inputs described above are now combined into the calculation of the levels
of motivation as follows:

nij(O) = 0

Mij(t) = [mij(I - 1) + inipatienc 3ij(t)]

"x snsoi g-feedbackij (t)
"x activity-supprussion ij (t)
"× inipaticnc(_rcs~tjj(t)(.1

"x acquiuscf.nccjj(t) (3.2)

Initially, the motivation to perform behavior set aij in robot ri is set, to 0. This
motivation then increases at some positive rate impatienc jj(I) unless one of four
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situations occurs: (1) the sensory feedback indicates that the behavior set is no
longer needed, (2) another behavior set in r, activates. (3) some other robot has just
taken over task hi(aij) for the first time, or (4) the robot has decided to acquiesce
the task. In any of these four situations, the motivation returns to 0. Otherwise.
the motivation grows until it crosses the threshold 0. at which time the behavior set
is activated and the robot can be said to have selected an action. Whenever some
behavior set aij is active in robot ri. r, broadcasts its current activity to other robots
at a rate of pi.

3.7 Proofs of Termination

When evaluating a control architecture for multi-robot. cooperation. it is important. to
be able to predict the team's expected performance using that architecture in a wide
variety of situations. One should be justifiably wary of using an architecture that can
fail catastrophically in some situations, even though it performs fairly well on average.
At the heart of the problem is the issue of reliability - how dependable the system
is, and whether it functions properly each time it is utilized. As I noted in chapter 1.
to properly analyze a cooperative robot architecture we should separate the architec-
ture itself from the robots on which the architecture is implemented. Even though
individual robots on a team may be quite unreliable, a well-designed cooperative ar-
chitecture could actually be implemented on that team to allow the robots to very
reliably accomplish their mission, given a sufficient degree of task coverage. On the
other hand, an architecture should not be penalized for a team's failure to accomplish
its mission even though the architecture has been implemented on extremely reliable
robots, if those robots do not provide the minimally acceptable level of task coverage.
A major difficulty, of course, is defining reasonable evaluation criteria and evaluation
assumptions by which an architecture can be judged. Certain characteristics of an
architecture that extend its application domain in some directions may actually re-
duce its effectiveness for other types of applications. Thus, the architecture must be
judged according to its application niche, and how well it performs in that context.

ALLIANCE is designed for applications involving a significant amount of un-
certainty in the capabilities of robot team members which themselves operate in
dynamic, unpredictable environments. Within this context, the first key point, of
interest is whether the architecture allows the team to complete its mission at all,
even in the presence of robot difficulties and failure. This section examines this issue
by first evaluating the performance of ALLIANCE in the most tractable domain -
teams composed of reliable, aware robots - and then considering the more complex
(and more realistic) domain - teams of robots with limited reliability in a dynamic
environment.
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3.7.1 Reliable, Aware Robot Teams

Let us first consider the situation in which the team is composed of reliable, aware
robots. Clearly, one would like the architecture to be able to perform well in this
simplest of domains, since we prefer that performance gains in challenging environ-
ments not preclude acceptable performances in the tamer applications. By the term
"reliable robot-, I mean that if a robot, ri is designed to accomplish a task hi(a ")
when it activates behavior set aij, then it really can accomplish that task, with prob-
ability equal to 1. Formally, a reliable robot is defined as follows, using the notation
of section 3.3:

Definition 3 A reliable robot, ri. is a robot for which both of the following conditions
hold:

V(aij E GRCj) . p(ri achieves task hi(aij) in finite time when
aij is activated ) = 1,

where p stands for the probability function.

* The sensory' feedback of r, provides an accurate view of the statf of world and
the state of the tasks, T. required by the current mission.

This definition says that the outcome of activating a goal-relevant behavior set aij
from any world state is that the task hi(aij) is successfully accomplished. Note that
in making this definition, I imply that nothing can happen in a reliable robot's en-
vironment that causes the robot to fail at its task, otherwise the robot would not
satisfy the definition of reliable.

I now define the notion of a reliable robot team:

Definition 4 A reliable robot, team is a group of robots. R. for which the following
condition holds:

V(ri E R).ri is a reliable robot,

I also define the notion of an aware robot team as follows:

Definition 5 An aware robot team is a group of robots. R. in which all members.
ri, know what the current actions of all robots rj E R are. at all times t.

Although this awareness is assumed to come from the ALLIANCE broadcast com-
munication mechanism that allows each robot to inform its teammates of its own cur-
rent action, any method of achieving awareness (via action recognition, for instance)
is sufficient.

Additionally, the robots are useful only if they can be motivated to perform some
action. Thus, I define the concept of an active robot team:
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Definition 6 An active robot teain is a group of robot.s R. such that:

V(ri E R).V(aij E GRCj)V(rk E R).VI.

[(&slou,( I., ) > 0) A(bfastij(t) > 0) A( is fititf)]

In other words, an actit'r robot has a monotonically increasing motivation to
perform any task of the mission which that robot has the ability to accomplish.
Additionally, the threshold of activation of all behavior sets of an actiff robot is
finite.

Finally, I define the notion of an idh robot:

Definition 7 An idle robot is a robot. ri. which is active at timf t. but for which thf
following condition is truc:

Vj.,ij(t) < 0

In other words, all of the motivations of an idOf robot are currently below the
threshold of activation.

I now define two conditions that are useful in studying these robot teams.

Condition 1 (Sufficient task coverage):

V(taskk E T).(task -coverage(taskk)) > 1

This condition ensures that all tasks required by the mission should be able to be
accomplished by some robot on the team.

Secondly, since reliable robots are assumed to never fail, the robots can be designed
to be maximally patient and minimally acquiescent. In terms of the formal problem
model, we have:

Condition 2 (Maximal patience, minimal acquiescence):

V(ri E R).V(aij E GRCi).V(rk E R).Vt.[(6ij(k. ) = oc) A(,ij (t) = o0) A(Aij(t) = oo)]

The following can now be proved about reliable, aware robot teams:

Theorem 1 Let R be a reliable, aware, active robot team. and Al be the mission to be
solved by R. such that Conditions 1 and 2 hold. Then the probability that ALLIANCE
enables R to accomplish Al equals 1.
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Proof: Let us examine the calculation of the motivatior of robot ri to I)erfornl be-
havior set aij (equation 3.2 from section 3.6). At time 1. the motivation Ii,(/) to
perform behavior set a ii either (1) goes to 0, or (2) changes from miw(I - 1) by the
amount i pati(j. fl'f (t ).

The motivation goes to 0 in one of four cases: (1) if the sensory feedback indicates
that the behavior set is no longer applicable, (2) if another behavior set becomes
active. (3) if some other robot has taken over task hi(aij), or (4) if the robot has
acquiesced its task. Since a rtliabk robot's sensory feedback is assumed to be accurate,
then if the sensory feedback indicates that the behavior set is no longer applicable.
we know that the task hi(aij) must be successfully accomplished. If another behavior
set aik becomes active in ri. we know from the definition of a reliable robot that ri
will complete behavior set aik in finite time, thus allowing ri to activate behavior set
aij. If some other robot has taken over task hi(aij), then since that, robot is a reliable
robot, we know that it will eventually accomplish task hi(ai,), thus eliminating the
need to activate task aij. Since I assume that Condition 2 holds. then the robot
will not be acquiescing the task. Therefore, all the factors causing the motivation
to perform behavior set ai) to go to 0 will, at. some point, be eliminated unless the
behavior set is no longer necessary.

Since ri is activf, then we know that irnpatiencaij(t) is greater than or equal
to mink(6_slowij(k,t)), which is greater than 0. Therefore, we can conclude that
an idle, yet active robot always has a strictly increasing motivation to perform some
incomplete task. At some point, the finite threshold of activation, 0, will be surpassed
for some behavior set, causing ri to activate that behavior set, which will then lead
the robot to accomplish the task hi(aij). Finally, since we assume that R is aware
and that Condition 2 holds, then once a robot ri has begun execution of a task. no
other robot will attempt to interfere with its execution of that task.

Since Condition 1 holds, sufficient robots are present to complete all tasks required
by the mission, and thus all tasks will eventually be successfully completed. 0

3.7.2 Limitedly-Reliable Robot Teams

Now let us consider teams of robots that are not always able to successfully accomplish
their tasks; I use the term limitcdly-reliablc robot to refer to these robots. A limitedly-
reliable robot is simply any robot team member, whether or not that robot meets the
definition of rdiable from the previous section. This situation is much more realistic
than the earlier assumption of completely reliable robot teams: in fact. this situation is
a primary assumption upon which ALLIANCE is designed. However, the uncertainty
in the expected effect of robots' actions clearly makes the control problem much
more difficult. Ideally. ALLIANCE's impatience and acquiescence factors will allow
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a robot teami to successfully reallocate actions as robot failures or dynamic changes
in the environment occur. With what confidence can we know that this will happen
in general? As we shall see below, in many situations ALLIAN('E is guaranteed to
allow a limitedly-reliable robot, team to successfully accomplish its mission.

Obviously. a robot's selection of actions is very much dependent upon the paramfe-
ter settings of the motivational behaviors -l particularly, the settings of 0j (k. t) (t imie
before impatient), - 1,i(t) (time before acquiescing to another robot). and Aj,(t) (time
before giving up current task). If these parameter are set to very small values, the
robots tend to "thrash" back and forth between tasks, exhibiting very short attention
spans. If the parameters are set to very large values, then the robots can be viewed
either as showing remarkable perseverance, or as wasting incredible amounts of time.

In practice, finding the proper parameter settings is not difficult. The ALLIANCE
architecture has been implemented on a number of quite different robotic applications.
reported primarily in this chapter and in chapter 6, and parameter tuning did not
prove to be a problem. Clearly, however, some attention should be paid to the
parameters, as they do have a significant influence on the action selection of the
robots. Ideally, the robots on the cooperative team should be able to adapt these
values with experience to find the right parameter settings that moderate between
the two extremes, rather than relying on human tuning. The learning system L-
ALLIANCE described in chapter 4 provides mechanisms that, allow the robots to
obtain the proper parameter settings; thus, I do not dwell on this issue here.

However, it is interesting to note that in certain restricted circumstances the exact
values to which the ALLIANCE parameters are set. does not affect the ability of the
team to complete its mission. I describe these circumstances here, and prove that
in these situations the robot team is guaranteed to be able to complete its mission
under the ALLIANCE architecture.

Let us now define a condition that holds in some multi-robotic applications.

Condition 3 (Progress when Working):
Let z be the finite amount of work remaining to complte a task w'. Then whenever
robot ri activates a behavior set corresponding to task w. either (1) ri remains active
for a sufficient, finite length of timc e such that z is reduced by a finite amount which
is at least some constant 6 greater than 0. or (2) ri experiences a failure with respect to
task w. Additionally, if z ever increases, the increase is due to an influence external
to the robot team.

Condition 3 ensures that even if robots do not carry a task through to comple-
tion before acquiescing, they still make some progress toward completing that task
whenever the corresponding behavior set is activated for some time period at least
equal to c. One exception, however, is if a robot failure has occurred that prevents
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robot ri from accomplishing task w. even if r, has been designed to achieve task w.
For example, in the hazardous waste cleanup mission. all the robots on the teani
are designed to have the ability to move spill objects from the start location to the
desired final spill location. However, if a robot's gripper breaks it is no longer able
to complete this task for which it. has been designed. and thus a robot failure with
respect. to moving the spill objects has occurred. The effect of this failure on the
remaining capabilities of that robot, depends upon t he settings of the impatience and
acquiescence parameters, and on the task coverage. If another robot is present that is
able to move the spill and has not experienced a failure, then that task will be accom-
plished in spite of ri's failure. On the other hand, if ri's impatience to perform the
move-spill task is higher than its impatience t.o perform another task, and no other
robot takes over the ,novf-spill task, then r1 will be stuck forever trying to accomplish
the move-spill task. This in turn causes other tasks that ri could perform to remain
incomplete. However, a careful method of updating the imlpatience and acquiescence
parameters can circumvent this problem; chapter 4 describes such a method used in
L-ALLIANCE.

Condition 3 also implies that if more than one robot is attempting to perform the
same task at the same time, the robots do not interfere with each others' progress
so badly that no progress towards completion of the task is made. The rate of

progress may be slowed somewhat, or even considerably, but, some progress is made
nevertheless.

Finally, Condition 3 implies that the amount of work required to complete tile
mission never increases as a result of robot actions. Thus, even though robots may
not be any help towards completing the mission, at least they are not. making matters
worse. Although this may not always hold true,5 in general. this is a valid assumption
to make. As we shall see, this assumption is necessary to prove the effectiveness of
ALLIANCE in certain situations. Of course, this does not preclude dynamic environ-
mental changes from increasing the workload of the robot team, which ALLIANCE
allows the robots to handle without problem.

What I now show is that whenever conditions 1 and 3 hold for a limitedlv-reliable
robot team, then either ALLIANCE allows the robot team to accomplish its mission,
or some robot. failure occurs. Furthermore, if a. robot failure occurs, then we can
know that any task that remains incomplete at the end of the mission is either a task
that the failed robot was designed to accomplish, or a task that is dependent upon
the capabilities of that robot. As an example of the difference between these types of
potentially incomplete tasks, consider a robot team performing the hazardous waste

5For instance, a robot could go haywire and start, scattering toxic waste already moved to the
goal destination all over the room, making it difficult., if not, impossible, for the remaining robots to
repair the damage.
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cleanup mission that consists of five robots that can imove the spill and report the
progiess, and one robot. ri. that call only find the initial spill location. This team
does have satisfactory task coverage to accomplish its mission. However. if r, fails.
then not only is ri's task (finding the spill) incomplete at the end of the mission, but
so are the tasks of moving the spill and reporting the progress, since they depend
upon the spill to be located before they can be activated. Thus. the extent of the
tasks that can remain incomplete after a robot failure may be more extensive than
just the tasks the failed robot was designed to perform.

I can now show the following:

Theorem 2 Let R be a limitedly-reliable, active robot team. and M! be the mission
to be solved by R. such that Coonditions I and 3 hold. Then either (1) ALLIANCE
enables R to accomplish M. or (2) a robot failure occurs. Further. if robot rf fails.
then the only tasks of A] that are not completed are some subset of (a) the set of tasks
rf was designed to accomplish. unioned with (b) the set of tasks dependent upon the
capabilities of rf.

Proof: The proof of theorem 1 showed us how the calculation of the motivational
behavior guarantees that each robot eventually activates a behavior set whose sensory
feedback indicates that the corresponding task is incomplete. Thus, I can focus
here on the higher-level robot interactions to prove that eithei the mission becomes
accomplished, or a robot failure occurs.

PART I (Either ALLIANCE succeeds or a robot fails):
Assume no robot fails. Then after a robot ri has performed a task w for any period
of time greater than c, one of five events can occur:

1. Robot rj takes over task w, leading robot ri to acquiesce.

2. Robot ri gives up on itself and acquiesces wv.

3. Robot rj takes ovei task w, but. ri does not acquiesce.

4. Robot ri continues w.

5. Robot ri completes w.

Since Condition 3 holds, we know that the first four cases reduce the amount of
work left to complete task wv by at least a positive, constant amount 6. Since the
amount of work left to accomplish any task is finite, the task must eventually be
completed in finite time. In the fifth case, since task w is completed, the sensory
feedback of the robots no longer indicates the need to perform task w. and thus the
robots will go on to some other task required by the mission.
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Thus, for every task that remains to be accomplished, either (1) a robot able to
accomplish that, task eventually attempts the task enough times so that it becomes
complete, or (2) all robots designed to accomplish that task have failed.

PART II (Incompleth tasks ar( d~pundunt upon a faihd robot's capabiitii,):
Let F be the set of robots that fail during a mission, and AF be the union of (a) the
tasks that the robots in F were designed to accomplish and (b) those tasks of the
mission that are dependent upon a task that a robot in F was designed to accomplish.

First, I show that if a task is not in AF, then it will be successfully completed. Let
W be some task required by the mission that is not included in AF. Since Condition 1
holds and this robot team is active, there must. be some robot, on the team that
can successfully accomplish w. Thus, as long as w remains incomplete, one of these
successful robots will eventually activate its behavior set correspondiipg to the task w:
since condition 3 holds. that task will eventually be completed in finite time. Thus, all
tasks not dependent upon the capabilities of a failed robot, are successfully cor !eted
in ALLIANCE.

Now, I show that if a task is not completed, it must be in AF. Let w be a task
that was not successfully completed at the end of the mission. Assume by way of
contradiction that w is not in AF. But we know from Part I that all tasks w not in
AF must be completed. Therefore, task w must be in AF.

I can thus conclude that if a task is not accomplished, then it must be a task for
which all robots with that capability have failed, or which is dependent upon some
task for which all robots with that capability have failed. E

Note that it is not required here that robot team members be aware of the actions
of their teammates in order to guarantee that ALLIANCE allows the team to complete
its mission under the above conditions. However, awareness does have an effect on
the quality of the team's performance, both in terms of the time and the energy
required to complete the mission. These effects on team performance are discussed
in chapter 5.

3.8 Experimental Results: Hazardous Waste
Cleanup

Recall the introductory example from chapter 1, illustrated in figure 1-1. A hazardous
waste spill in an enclosed room must. be cleaned up by a team of robots. In this
mission, the robot team must locate the spill and move it to a safe location, while
also periodically reporting its progress to humans monitoring the system by returning
a robot representative to the room entrance occasionally to radio the team's current
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mission completion status. In my experimental setup. the spill consists of 10 spill
objects (i.e. small cylindrical '.pucks" measuring 2 inches inl diameter and 1.5 inches
high) at the initial spill location and the room in which the robots work is rectangular.
with sides parallel to the axes of the global coordinate system.

Further recall that a. difficulty in this mission is that the human inonitor does not
know the exact. location of the spill in robot coordinates. and can only give the robot
team qualitative information on the initial locat;on of the spill and the final desired
location to which the robots must move the spill. Thus, the robots are told that the
initial location is in the center of the front third of the room, and that the desired
final location of the spill is in the back, center of the room. relative to the position of
the entrance. The robot team's goal is to complete this mission as quickly as possible
without needlessly wasting energy.

3.8.1 The Robot Team

I studied this task with two different teams of robots: one team was composed of
two R-2 robots. RED and GREEN, while the second team was composed of three
R-2 robots, RED, BLUE, and GREEN. As noted earlier, although these robots are of
the same type and thus have the potential of maximum redundancy in capabilities,
mechanical drift and failures have caused them to have quite different actual abilities.
For example, RED has use of its side infrared (IR) sensors which allow it to per-
form wall-following, whereas the side IR sensors of BLUE and GREEN have become
dysfunctional. The L-ALLIANCE learning system described in chapter 4 gives these
robots the ability to determine from trial to trial which team member is best suited
for which task.

Each robot has been preprogrammed to have the following behavior sets, which
correspond to high-level tasks that must be achieved on this mission: find-initial-
final-locations-methodical, find-initial-fin al-locations-wander, movc-spill. and report-
progress. A low-level avoid-obstacles behavior is active at all times in these robots
except during portions of the move-spill task, when it is suppressed to allow the robot
to pick up the spill object. The organization of the behavior sets for this mission is
shown in figure 3-4.

Two behavior sets are provided which both accomplish the task of finding the
initial and final spill locations - find- init iai-final-locat ions-in ( thodical and find-initial-
final-locations-wander - both of which depend upon the workspace being rectangular
and on the sides of the room being parallel to the axes of the global coordinate system.
Because of these assumptions, these behavior sets do not serve as generally applicable
location-finders. However, I made no attempt to generalize these algorithms, since
the point of this experiment is to demonstrate the characteristics of ALLIANCE.
Shown in more detail in figure 3-5, the methodical version of finding the spill location
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is much more reliable than the wander version, and involves the robot first noting its
starting (or home) x. y position and then following the walls of the room using its
side IRs until it has returned to its home location while tracking the minimum and
maximum x and y positions it reaches. It then uses theser. y values to calculate the
coordinates of the center of the front third of the room (for the initial spill location)
and the back center of the room (for the final spill location). These locations are
then made available to the mnov(-spill behavior set, which requires this information
to perform its task.

The wander version of finding the initial and desired final spill locations, shown in
figure 3-6. avoids the need for side IR sensors by causing the robot to wander in each
of the four directions (west, north, east, and south) for a fixed time period. While the
robot wanders, it tracks the minimum and maximum x and y positions it discovers.
Upon the conclusion of the wandering phase, the robot calculates the desired initial
and final locations from these minimum and maximum x, y values.

The move-spill behavior set, shown in more detail in figure 3-7, can be activated
whenever there are spill objects needing to be picked up and the locations of the
initial and final spill positions are known. It involves having the robot (1) move to
the vicinity of the initial spill location, (2) wander in a straight line through the area
of the spill while using its front IR sensors to scan for spill objects, (3) "zero in" on
a spill object once it is located to center it in the gripper, (4) grasp and lift the spill
object, (5) move to the vicinity of the final spill location, and then (6) lower and
release the spill object.

The report-progress behavior set, shown in figure 3-8, corresponds to the high-
level task that the robot team is required to perform about every 4 minutes during
the mission. This task involves returning to the room entrance and informing the
human monitoring the system of the activities of the robot team members and some
information regarding the success of those activities. Note that this task only needs
to be performed by the team as a whole every 4 minutes, not by all team members. In
a real-life application of this sort, the progress report would most, likely be delivered
via a radio message to the human. However, in this experiment no actual progress
information was maintained (although it could easily be accomplished by logging the
robot activities), and delivering the report consisted of playing an audible tune on
the robot's piezoelectric buzzer from the room entrance rather than relaying a radio
message.

3.8.2 Instantiating the Formal Problem Definition

With the information given thus far in this , ction, the hazardous waste cleanup mis-
sion can be stated in terms of the formal problem definition presented in section 3.3.
The set of robots in the two-robot (n = 2) version of this mission is R = {RED.
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Figure 3-5: The robot control organization within the find-initial-fin al-locations-
methodical behavior set.
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GREEN). while in the three-robot (n = :3) version. R = {REI). BLUE. GMEEN}.
The set, of tasks composing the mission. T'. is dlefinled as follows:

T ={flnid-inillial-Jinial-ioc-atlio.s, 1110 N' -'spill-lo-jiii (//l-/O'( li0on.

re pot-p r~jr ~s-f c ry-- n int(l 8}

The sets of high-level task-achieviiig functions p~ossessed by these robots are !(lel-

t ical:

ARED = ABLUE == GREEN = {finid-'in iti'al-Jinoal-iocafotions- in ii todical.

finid-iniliial-finial-locationis- u'a nd t*. mot, -.spiiI.

Iccport-progrfs's}

Since RED has all the sensors and effectors required to accomplish these functions.
its goal-relevant capabilities are identical t~o its high-level task-achieving functions:
that. is, GRORED =ARED. However, since BLUE and GREEN's side IRs are broken.
we have:

GRCBLLTE = GRCGREEN fill d- in it ial-final-loca tio ns- wan der-,

mnore-spill, report-p rogre ss}

The tasks achieved by the behavior sets in each robot are as expected:

hi(RED's find- in itial-fin al-locations-r meth odical)
= {flnd-initiai-flnal-iocations}

h (RED's fin d-initi al-fin al-locations- wa nder) =
h (BLUE's find-intitial-final-locations,- wan~der,) =

h (GREEN's find- initial -final-i ocations-wtan de r)
= {flnd-i'nitiai-flnal-iocations}

h(RED's move-spill) =

h(BLUE's moive-spill) =

h (GREEN's move -spill) = { miove~t-spill-l o-fin al-I ocat ion})

h(RED's report-progress) =
h( BLUE's report-progre~ss) =

h (GREEN's repo-rt-progress)
I re port-Progress-cievery-4-mI in uteS}



60 ('CHAPTER 3. ALLIAN('E: THE (OOPERATIV'E ROBOTIR3' A\1 ITE(CTIU' E

Note that even though the behavior sets fin d-iin ilial-jin al-iocali on.s- tin Oh odicl and
find-initial-fijal-localiont,-w,aiud i are distinct, they accomplish the same task.

For I? ={RED. GREEN}, the task coverage of this mission is given by:

Iask- cot,( rag( (fin d- -inti ial-fin al-loca tios) = 3

taw-corf, I'•gt (mort -. pi11-to-final-looi'a .on) = 2
ta.'kLt'oi'c rag• (ruporl-progrs ,-• ce r!y-4-,in uhs,)=

and for ? ={RED. BLUE. GREEN):

task-co ,(irag (find-initial-fin al-locatio.ns.) = 4

1ask.co rfrag( (ti o i(•-spill-to-fin al-loca tion ) = 3

task•_cor,' ragi (rtporl-progryss-c i., try-4-m int I es) = 3

Obviously, since task-cov,-rage(taski) does not. equal a multiple of n for all taski
in either the two-robot or the three-robot team, these teams do not qualify as homo-
geneous as set forth in section 3.3.

3.8.3 Results of Baseline Experiments

The first set of experiments I report here are what I call the two- and three-robot
basdinu experiments. In this set of experiments, I equipped the robot teams described
above with the fully functional ALLIANCE architecture, complete with explicit com-
munication for allowing robots to be aware of the activities of their teammates. Using
this communication system, robots broadcasted a statement of their current actions
to the rest of the team at, a pre-specified rate. I ran over 50 logged trials of these
experiments, along with several variations reported in chapter 5, all of which allowed
the study of a number of interesting cooperative robot issues. The results presented
in this section for the numerous baseline experiments illustrate the ability of AL-
LIANCE to meet the design requirements of robustness, reliability. flexibility, and
coherence.

Let us examine the results of these experiments. Figure 3-9 shows the actions se-
lected by each robot on a typical trial of this experiment with the two-robot team. and
figure 3-10 shows the actions selected by each robot on a typical trial with the three-
robot team. Figure 3-11 shows the trace of the robot movements during a typical
two-robot mission'. Prior to both the two- and three-robot trials, the L-ALLIANCE
learning system described in chapter 4 has allowed the team members to determine
that GREEN (or GREEN and BLUE. in the three-robot case) cannot, successfully ac-

6This movement, trace data was created by hand from a videotape of a two-robot team performing

this mission.
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Figure 3-9: Robot actions selected during experiment with two robots (RED and
GREEN) using the ALLIANCE architecture with full awareness of other team mem-
ber actions. This is one instance of many runs of this mission.

complish the task corresponding to the find-initial-final-locations-ilthodical behavior
set, and that RED is quicker at finding the spill.

At the beginning of a typical three-robot mission, RED has the highest moti-
vation to perform behavior set find-initial-final-locations-ntthodical, causing it to
initiate this action, as shown in figure 3-12. (In this and the following photographs,
the starting location of the GREEN and BLUE robots (center, rear of the first. photo-
graph) is the room entrance, the spill location is at the right, center of the photograph
(where the small, cylindrical objects are located), and the goal location is at, the near,
right end of the photograph.) This causes GREEN and BLUE to be satisfied for a
while that the initial and final spill locations are going to be found: since no other
task can currently be performed, they sit waiting for the two locations to be found.
However, they do not sit forever waiting on the locations to be found. As they wait.
they become more and more impatient over time, which can cause one of BLITE or
GREEN to activate its own find-in itial-final-localions-wandur if RED does not suc-
cessfully locate the spill. Note that BLUE and GREEN do not activate their own
find-initial-fin a-loei ations- in cf hodical because they have learned in previous trials that
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Figure 3-10: Robot actions selected during experiment with three robots (RED,
BLUE, and GREEN) using the ALLIANCE architecture with full awareness of the
current actions of other team members. This is one instance of many runs of this
mission.
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Figure 3-11: A trace of the movements of a typical two-robot team performing the
cleanup mission. The two robots at the left end of the picture show the robot starting
locations. The square with the heavy bold outline towards the left, center of the room
is the starting spill location, while the bold "X" at the right indicates the desired
final spill location. The location from which progress reports are to be given is in
the vicinity of the robot starting positions. The bold trace gives the movements of
GREEN; the non-bold trace indicates the movements of RED. In this example. RED
first performs the find-locations task, followed by both GREEN and RED moving spill
objects - three objects each, on three transports each. GREEN ends up reporting
progress two times, while RED reports the team progress once.
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Figure 3-12: The beginning of the hazardous waste cleanup mission. The left-
most robot (RED) has activated its find- in itial-fit aal-location.s- rn th odical behavior
set, which causes it to circle the perimeter of the room. The remaining two robots
(aligned with each other at the room entrance) are patiently waiting on RED to com-
plete its task. Note the spill objects (small cylindrical "pucks") at the right center of
the photograph.

that action does not achieve the desired effect. Indeed, as shown in figure 3-13 for a
two-robot experiment, GREEN did overtake RED at this task when I intentionally
interfered with RED's progress. In that case, RED acquiesced its attempt to find
the initial and final locations to GREEN, since RED realized it was encountering
difficulties of some sort. In either case, the robot finding the initial and final spill
locations reports these two locations to the rest of the team.

At this point, the environmental feedback and knowledge of the initial and final
spill locations indicate to the robots that the movt-spill behavior set is applicable.
Since this is a task that can be shared, the robots begin searching for a spill object. in
the initial spill area, as shown in figure 3-14 for a typical three-robot experiment. Once
a spill object has been grasped, the robot carries it to the goal location. Figure 3-15
shows a close-up of a. robot grasping a spill object and beginning its transport to the
goal location. In this photograph, note the extra. spill object caught in the cavity
under the gripper, which allows this robot to move more than one spill object on this
trip to the goal location. Figure 3-16 shows the transport from a wider perspective.

In the meantime, the robots' motivations to report the team's progress are increas-
ing. Once a robot has delivered a spill object to the destination, that robot becomes
motivated to report the team's progress, and thus activates the rcport-progrfss be-
havior set. Figure 3-17 shows a robot, (at the far, center of the photograph) reporting
the team's progress at the room "entrance" during a typical mission. This reporting
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Figure 3-13: Robot actions selected during experiment with two robots (RED and
GREEN) with full awareness of other team member actions, and when RED fails in
its task to find the initial and final spill locations. This is one instance of many, runs
of this mission.
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Figure 3-14: Now knowing the location of the spill, the R-2 robots are attempting to
find spill objects to move to the goal location.

satisfies the rest of the team, so the remaining robots re-activate their lnovf -spill
behavior set. This series of actions is repeated until all of the spill is moved and the
mission is complete.

3.8.4 Discussion of Baseline Experiments

This experiment illustrates a number of primary chara-teiistics I consider important
in developing cooperative robotic teams. First of all, the cooperative team is robust, in
that robots are allowed to continue their actions only as long as they demonstrate their
ability to have the desired effect on the world. This was illustrated in the two-robot
experiment by GREEN's becoming gradually more impatient with RED's search for
the spill. If RED did not locate the spill in a reasonable length of time then GREEN
would take over that task, with RED acquiescing the task. Secoiirlv, the cooperative
team is able to respond autonomously to many types of unexl, idcl events either
in the environment or in the robot team without the need for external intervention.
At ai,, time in this mission, I could disable one of the robots, causing the remaining
robot to perform those tasks that the disabled robot would have peiformed, assuming
the task was within the working robot's capabilities. Clearly, I could also have easily
increased or decreased the size of the spill during the mission and the robots would not
be adversely affected. Third, the cooperative team need have no a priori 1 nowledge of
the abilities of the other team members to effectively accomplish the task. However,
the learning system, L-ALLIANCE, does allow the team to improve its efficiency
on subsequent, trials whenever familiar robots are present. This was illustrated in
GREEN's willingness to allow RED to attempt to find the spill because of GREEN's
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Figure 3-15: The rightmost R-2 in this photograph has just grasped a spill object
Ind is taking it to the goal location. Note the additional puck caught in the cavity

below the gripper, which allows this robot to transport more than one spill object on
this trip.

..: ' .... ...

Figure 3-16: One R-2 (the closest, to the viewer) has found and grasped a spill object,
and is now transporting it to the goal location. This goal location is at the near, right
foreground of this photograph.
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Figure 3-17: Reporting progress in the hazardous waste cleanup mission. The robot
in the far, center of this photograph is reporting the team's progress at the -entrance"
to the room.

knowledge that RED was superior in this task. In a similar vein. the learning system
would also allow GREEN and RED to learn about GREEN's improved performance
in finding the spill if GREEN's faulty sensors were repaired between missions.

The types of problems I had in implementing this application revolved mostly
around the weaknesses of the R-2 sensors, and dealt with issues of behavior set design
rather than issues of cooperative control. Collisions between robots were reduced
by placing white paper around the lower edge of the robots, which can be more
easily detected by the robots' infrared sensors. However, the robots still jammed
their shoulders at times, and had to be manually rescued. Another type of robot
interference that occasionally occurred in the process of searching for pucks was when
two robots headed straight toward each other in the zone of the spill, and interpreted
each other's fingers as spill objects. They would then proceed to "hold hands".
grasping each other's gripper and lifting. Although this was quite entertaining, I
tried to preempt this as much as possible, to prevent damage to the robots' grippers.
A final problem in this mission was that the robots would occasionally become lodged
on a spill object when depositing another spill object at the goal location. Recall that
when a robot initially grasps a spill object, it lifts it up during the transport to the
goal. However, since the robot cannot sense spill objects underneath its fingers, if it
releases its spill object and lowers its gripper while another spill object is underneath
the gripper, the robot pushes up on the spill object, raising its wheels off the ground
and becoming permanently stuck.

One interesting emergent behavior can also be reported that resulted from more
than one robot searching the initial spill area at the same time. Occasionally, if the
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robot posit ions were just right, the result. of trying to home ill On a spill object act ually
caused one robot to follow another robot through th- spill area. This emergent "'follow
the leader" behavior is not of particular use here, however, since the result is usually
for the following robot to be lead away from the spill objects. rather than toward
them.

3.9 Summary and Contributions

This chapter has presented a fully distributed architecture for fault tolerant hetero-
geneous mobile robot cooperation. I discussed the assumptions I made, and did not
make, in the development of ALLIANCE. and then described the primary mecha-
nism facilitating adaptive action selection in this architecture - the motivational
behavior. I presented a formal model of this mechanism, which combines input from
robot sensors, inter-robot communication, active behavior sets, and internal robot
motivations, to calculate a motivational level for each of the robot's behavior sets.
I proved that ALLIANCE is guaranteed to terminate in mission completion for re-
liable, aware robots which are maximally patient and minimally acquiescent, or for
limitedly-reliable robot. teams when the Progress When Working condition is true.
I then presented the results of implementing this architecture on physical teams of
robots performing the hazardous waste cleanup mission.

Let us now review the initial design requirements outlined in chapter 1 and ex-
amine the extent to which ALLIANCE meets these design goals.

3.9.1 Meeting Design Requirements

Recall that my primary design goal outlined in chapter 1 was to develop a cooperative
architecture that allowed heterogeneous robots to cooperate to accomplish a mission
while exhibiting robustness, reliability, flexibility, and coherence. As I review these

issues here, I note that the development of a cooperative robot architecture can
actually be viewed as the development of an individual robot control architecture that
facilitates a single robot's cooperation with other similarly-designed robots. Thus, I
describe how each of these performance issues are addressed both from the view of
an individual robot control strategy and from the view of a collective team strategy.

Robustness and Fault Tolerance

Fault tolerance and robustness refer to the ability of a system to detect and grace-
fully compensate for partial system failures. In ALLIANCE, each individual robot is
designed using a behavior-based approach which ensures that lower levels of compe-
tence continue to work even when upper levels break down. In addition, individual
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robots can Ibe given multiple ways to l)erfornl certain tasks. allowing them to explore
alternative approaches when met wit hi failure.

From the viewpoint of the team. ALLIAN('E first enhances robustness bY being

fully distributed. IUnlike hierarchical architect tires, since no individual robot in AL-

LIANCE is responsible for the control of other robots. the failure of any particular
robot is not disproportionally damaging. Secondly. ALLIANC(' enhances teain ro-
bust ness by providing mechanisms for robot team members to respond to their own
failures or to failures of teammates, leading to a reallocation of tasks to ensure ihat
the mission is completed. Third. ALLIANCE allows the robot team to accomplish

its mission even when the communication system providing it with the awareness of
team member actions breaks down (see chapter 5 for a deeper discussion of this issue).
Although the team's performance in terms of time and energy may deteriorate, at
least the team is still able to accomplish its mission. Finally. ALLIANCE enhances
team robustness by making it easy for robot team membtrs to deal with the presence
of overlapping capabilities on the team. The ease with which redundant robots can
be incorporated on the team provides the human team designer the ability to utilize
physical redundancy to enhance team robustness.

Reliability

Reliability refers to the dependability of a system and whether it functions properly
each time it is utilized. In ALLIANCE, reliability is measured in terms of the archi-
tecture's ability to have the robot team accomplish its mission each time the mission
is attempted. I have shown that under certain conditions ALLIANCE is guaranteed
to allow the robot team to complete its mission, except when robot failures eliminate
required capabilities from the team (from which no architecture could recover). The
ALLIANCE action selection mechanism thus gives a mean, for the robot team to
achieve its mission reliably and consistently.

Flexibility and Adaptivity

Flexibility and adaptivity refer to the ability of -obots to modify their actions as the
environment or robot team changes. The motivational behavior mechanism of AL-
LIANCE constantly monitors the sensory feedback of the tasks that can be performed
by an individual agent. adapting the actions selected by that agent to the current en-
vironmental feedback and the actions of its teammates. Whether the environment
changes to require the robots to perform addtional tasks or to eliminate the need for
certain tasks, ALLIANCE allows the robots to handle the changes fluidly and flexi-
bly. ALLIANCE enhances the adaptivity and flexibility of a robot ham by providing
mechanisms for robots to work with any other robots designed using ALLIANCE: the
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robots are Ilot required to possess ad-va nce knowvledge of t lIe calpaIbiliIt s of t Ie ot Iier
robots.

As we shall see in chapter 1. L-ALIIAN('E also helps with the issues of flexibilit v
and a.al)tivity by allowing robots to learn about 1heir own abilities and the abilitieCs
of their teammates in order to improve their performance on subseqieient trials of

similar missions whenever familiar agents are )rese•t.

Coherence

('ohfrtint refers t.o how well the actions of individual agents combine towards some
unifying goal. For individual agents, ALLIAN('E causes robots to work only on
those tasks which the environmental feedback indicates need to be executed. Thus.
ALLIANCE will not cause an individual agent to work on some task that is not

required by the mission, nor consistent with the current state of the environment.
Obtaining coherence at the team level requires that robots have some means of

determining the actions of other robots and/or the effect of those actions on the
environment. Without this knowledge, the robots become a collection of individuals
pursuing their own goals in an environment that, happens to contain other such robots.
While we certainly want the robots to be able to accomplish something useful even
without, knowledge of other robots on the team, ideally each robot, should take into
account the actions of other robots in selecting their own actions.

Determining the actions of other robots can be accomplished through either pas-
sive observation or via explicit communication. Since passive action recognition is
very difficult and is a major research topic in itself, ALLIANCE augments the ob-
servation skills of the robot, team members through the use of one-way broadcast
communication that provides each robot with an awareness of the actions of other
robots, plus the ability to act on that info: mation. With this awareness, robots do
not replicate the actions of other robots, thus giving them more coherence. I note the
importance of this mechanism to achieve team coherence, since when the communi-

cations mechanism is unavailable, team coherence is reduced. Refer to chapter 5 for
a discussion of this issue.

3.9.2 Contributions

The design of ALLIANCE embodies many characteristics that, facilitate fault. toler-
ant cooperative control of small- to medium-sized heterogeneous mobile robot, teams
as applied to missions involving loosely-coupled, largely independent, tasks. These
characteristics are summarized as follows:

9 Fully distributed (at both the individual robot level and at the team level).
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"* Applicable to robot teams having any degree of iteterogeneity.

U Ises no negotiation o0r two-wa conv\ersations.

"* Recovers from failures iii individual robots or in the coiumunication systemuu.

"* Allows new robots to be added to the team at an.\, timne.

"• Allows adaptive action selection in dyInamic environments.

"• Eliminates replication of effort when communication is available.

"* Provabliy terminates for a large class of applications.

"* Scales easily to large missions.

I note that a number of issues regarding the efficiency of ALLIANCE were not
addressed in this chapter. Among these issues include questions of how long robots
remain idle before activating a task, how to ensure that robots failing at one task go
on to attempt another task they might be able to accomplish. how robots deal with
having more than one way to accomplish a task. and so forth. Since these issues are
handled with dynamic parameter update mechanisms. I answer these questions as I
present L-ALLIANCE in chapter 4.



Chapter 4

L-ALLIANCE: Improving
Efficiency

This chapter describes an extended version of ALLIANCE, called L-ALLIANCE (for
Learning ALLIANCE), that preserves the fault tolerant. features of ALLIANCE while
incorporating on-line, distributed control strategies that greatly improve the efficiency
of the cooperative robot team performing a mission composed of independent tasks.
These strategies allow each individual robot to learn about the quality with which
robot team members perform certain tasks, and then to use this learned knowledge
to determine the appropriate action to activate at each point in time. This chapter
first provides the motivation for why this learning is necessary, discusses the assump-
tions made in L-ALLIANCE, and then provides a formal description of the learning
problem. I show in section 4.3 that this learning problem is NP-hard, concluding that
requiring the robot team to derive the optimal selection of actions through learning
is unrealistic.

In section 4.4, 1 discuss the scalability of L-ALLIANCE as the size of the robot
team and the size of the mission grows, showing that through parallelism, the AL-
LIANCE and L-ALLIANCE techniques are independent of the size of the mission.
and grow linearly with the number of robots on the team. I then discuss the mecha-
nism used in L-ALLIANCE to allow robots to learn about the performance levels of
teammates, and describe various distributed control strategies I investigated for using
this learned knowledge to improve the efficiency of the team. In section 4.5, 1 present
the empirical results of these investigations in simulation for a large space of possible
cooperative robot teams that vary in the number of robots, the size of the mission to
be performtd, the degree of task coverage, the degree of heterogeneity across robots,
and the degree to which the Progress When Active condition introduced in chapter 3
holds. I then compare the results of the best distributed control strategy to the op-
timal solution and show that this final control strategy performs quite close to the

73
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optimal allocation of tasks to robots for those examples in which the op)t imal solut ion
can be derived. In section 4.-6. 1 provide the details of how the learning approach is
incorporated into the L-ALLIANCE motivational behaviors. Finall*y. I conclude inI
section 4.7 by returning to mny original design requirements for the cooperative al'-
chitecture. describing the contributions L-ALLIANCE makes towards meeting those
requirements.

4.1 Motivation for Efficiency Improvements via
Learning

As described in chapter 3. the ALLIANCE architecture allows robots to adapt to
the ongoing activities and environmental feedback of their currentn mission. However.
ALLIANCE does not address a number of efficiency issues that are important for
cooperative teams. These issues include the following: How do we ensure that robots
attempt those tasks for which they are best suited? ('an we enable the robot team
to increase its performance over time? Does failure at one task imply total robot
failure? How does a robot select a method of performing a task if it has more than
one way to accomplish that task? How to we minimize robot idle time?

The L-ALLIANCE enhancement to ALLIANCE addresses these issues of efficiency
by incorporating a dynamic parameter update mechanism into the ALLIANCE ar-
chitecture. This parameter update mechanism allows us to preserve the fault tolerant
features of ALLIANCE while improving the efficiency of the robot team performance.
A number of benefits result from providing robots with the ability to automatically
adjust their own parameter settings to improve efficiency:

1. Relieve humans of the parameter adjusting task:

As described in chapter 3. ALLIANCE requires human programmer tuning of
motivational behavior parameters to achieve desired levels of robot performance.
Although finding good parameter settings is often not difficult in practie. the
cooperative architecture would be much simpler to use if the human were re-
lieved of the responsibility of having to tune numerous parameters.

2. Improve the efficiency of the mission performance:

Related to the previous item is the issue of the efficiency of the robot team's
performance of its mission. As human designers, it is often difficult to evaluate
a given robot team performance to determine how best to adjust parameters
to improve efficiency. However, if the robots were controlled by an automated
action selection strategy that has been shown to result in efficient group action
selection in practice, then the human designer can have confidence in the robot
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team's ability to accomlplisli the mission autonomiously. and thus not feel thie
need to adjust the paranreters b1 hand.

3. Facilitate custom-designed robot teams:

Providing the ability for robot teams to carry over their learned experielices
from trial to trial would allow hiinjan designers to successfully construct unliqtue
teams of interacting robots from a pool of heterogeneous robot tvypes for any
given mission without the need for a great deal of preparatory work. Althiough
ALLIANCE allows newly constructed teams to work together acceptably the
first time they are grouped together. automated parameter adjusting mecha-
nisms would allow the team to improve its performance over time by having
each robot learn how the presence of other specific robots on the team should
affect its own behavior. For example, two robots pursuing the hazardous waste
cleanup mission that can both find the location of the spill, but with differ-
ent task completion times, should learn which robot performs the task quicker
and allow that robot to find the spill location on future missions, as long as
it continues to demonstrate superior performance. Through this learning, the
robots should thus allow the mere presence of other team members to affect
their subsequent actions.

4. Allow robot teams to efficiently adapt their performance over time:

During a mission, a robot team's environment and the ability of its members
may change dynamically. However, in the basic ALLIANCE architecture, pa-
rameter settings do not change after the start of the mission. Thus, these robot
teams would be quite vulnerable to calibration problems due to drifts in the
environment and in robot capabilities. The ability to automatically update
parameters during a mission is therefore of critical importance.

Providing a robot team with the ability to automatically update its own motiva-
tional behavior parameters requires solutions to two problems:

"* How to give robots the ability to obtain knowledge about the quality of team
member performances

"* How to use team member performance knowledge to select a task to pursue

Solutions to the first problem require a robot, to learn not only about the abilities
of its teammates, but also about its own abilities. Although each robot "'knows" the
set of behaviors that it has been programmed to perform, it may perform poorly at
certain tasks relative to other robots on the team. Robots must. thus learn about
these relative performance differences as a first step toward efficient mission execu-
tion. However. learning these relative performance quality differences is only a first.
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step in iniproving efficiency. The next. more major. qulestion. is how robots iise tihe

performance knowledge to efihciently select their own actions. This chapter describes
the L-ALLIANCE approach to these p)roblems.

4.2 Assumptions Made in L-ALLIANCE

Two key assumptions are made in the development of L-ALLIAN(E. as follows:

" A robot's average performance in performing a specific task over a few recent
trials is a reasonable indicator of that robot's expected performance in the
future.

" If robot ri is monitoring environmental conditions C to assess the performance of
another robot rk. and the conditions C change, then the changes are attributable
to robot rk.

Without the first assumption, it will be quite difficult for robots to learn anything
at all about their own expected performance, or the performance of their teammates,
since past behavior would provide no clues to the expected behavior in the future.
The trick, of course, is determining which aspects of a robot's performance are good
predictors of future performance. In L-ALLIANCE, I have used the simple measure
of the time of task completion, which has served to be a good indicator of future
performance.

My second assumption deals with the well-known credit assignment problem,
which is concerned with determining which process should receive °credit (or pun-

ishment) for the successful (or unsuccessful) outcome of an action. The assumption
I make in L-ALLIANCE is that the only agents which affect the properties of the
world that a robot ri is interested in are the robots that ri is monitoring. Thus.
if a robot rk declares it is performing some task. and that task becomes complete.
then the monitoring robot will assume that rk caused those effects. This assumption
is certainly not always true, since external agents really can intrude on the robots'
world. However, since this issue even causes problems for biological systems, which
often have difficulty in correctly assigning credit. I do not concern myself greatly with
this oversimplification.

4.3 The Efficiency Problem

I now formally define the efficiency problem with which I am concerned. As in chap-
ter 3, let R = {ri, r 2 ... r, rI} represent the set of n robots on the cooperative team, and
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the set T = { task . las k2 .... ask, } represent the m independent tasks required iII
the current mission. Lach robot iii IB has a number of high-level task-achieving fiunc-
tions (or b)ehavior sets) that it can perforni, represented hy tihe set A, = {aI. ui1.

Since different robots may have different ways of performing the same task. I lneed a

way of referring to the task a rol)ot is working on when it activates a 1)ehavior set.
Thus, as in chapter 3, 1 define thie set of n functions {hi(a m.).h 2(a2k.).l.. (,,(.)}
where hi(ai.) returns the task that robot r, is working on when it activates behavior
set ai..

Now. I define a metric evaluation function. q(a 1.,), which returns tlie 'quality'
of the action ai( as measured by a given metric. Typically, we consider metrics
such as the average time or average energy required to coml)lete a task. although
many other metrics could be used. Of course, robots unfamiliar with their own
abilities or the abilities of their teammates do not have access to this q(a.ij) fuction.
Thus, an additional aspect to the robot's learning problem is actually obtaining the
performance quality information required to make an "intelligent" action selection
choice.

Finally, I define the tasks a robot will elect to perform during a mission as the set
I,- = {aijlrobot, ri will perform task hi(aij) during the current mission}.

In the most general form of this problem. the following condition holds:

Condition 4 (Different Robots are Different):
Diff'rent robots may hat, different collections of capabilities: thu.s. I do not assume
that Vi.Vj.(Ai = Aj). Further. if different robots can ptrform the same task. thfy
may pfrform that task with different qualities: thus. I do not assume that if hi(ai,)
hj(aj.). then q(ai,) = q(ajy).

Then I can define the formal efficiency problem under condition 4 as follows:

ALLIANCE Efficiency Problem (AEP):

For each robot, ri:
Given T, Ai, and hi(aik), determine the set of actions U~ such t hat

* Vi.Ui C Ai

* Vj.3i.3k.((taskj = hi(aik)) and (ai.k E (4))

and one of the following is minimized, according to the desired perfor-
mance metric:

* inaxi( E qti,.(aik)) (metric is time)
a,k EI
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* qi;ri (i (imettic is ,,,,,iqy)

The first two constraints of the learning p)roblemi ensure that eachi task in the
mission is assigned to some robot that can actuallv accomplish that task. The final
two constraints ensure that, either the time or the energy required to complete the

missionl is minimized. Since robot team meml)ers usually perform their actions in
parallel during a mission. tile total mission completion time is the time at which tile
last robot finishes its final task. Thus, when our performance metric is timt, we want

to minimize the maximum amount of time any robot will take to perform its set of

actions. On the other hand. when we are concerned with energy usage. parallelism

does not help us, since robots use energy whenever they are act ively performing somne

task. In this case. we must minimize the total amount of energy that all robots take
to perform their sets of tasks during the mission.

It is important to note here that for reasons outlined in chapter I and elsewhere
in this report. the efficiency problem must be solved by a distributed group of robots
rather than a centralized decisionmaker. I do not want to sacrifice the advantages
of robustness, fault tolerance, and flexibility offered by a distributed solution for a
centralized controller which greatly reduces or even eliminates these desirable charac-
teristics. In fact, as we shall see, an appropriately designed algorithm can scale much
better than a centralized approach as the size of the mission increases. Thus. rather
than having some controlling robot, derive the task allocation for the entire team, the
ideal solution involves each robot choosing actions individually such that the globally

optimal result is obtained.
However, even if one assumes that the robots have good information on thcir

own abilities and the abilities of their teammates, how realistic is it to require the

robots to derive the optimal action selection policy? As it turns o,•. the efficiency
problem, AEP, can be easily shown to be NP-hard by restriction to the well-known
NP-complete problem PARTITION [Garey and Johnson, 1979]. The PARTITION
problem is as follows: given a finite set. VV and a "size" s(w) E Z' for each w E I1.
determine whether there is a subset 11" C W such that E-,1-1 s(0') = ZEE_' '-, •w).

We then have the following:

Theorem 3 The ALLIANCE (fficikucy problen (AEP) is NP-hard in the number
of tasks required by the mission.

Proof: By restriction to PARTITION:
Allow only instances of AEP where n = 2, A1 = A 2 = 1'. Vi.Vj.(hb(aj) = taskj).

and Vj.(q(aij) = q(a 2j) = s(wj)), for wj E W. Then since PARTITION is a special
case of AEP, AEP must be NP-hard. 0
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Since the PARTITION problem is stated i*n terms of finding two equally-sized
subsets of tasks I1" and 11". tihe proof of this tlheorem restricts AEP to those ill-
stances involving two robots with identical capabilities and qualities of capabili•ties.
Furthermore, each robot has the same one-to-one mapping of behavior sets 1o tasks.
meaning that all robots use the same behavior set to accomplish the same task, and
all behavior sets are needed to accomplish the mission. These ALEP instances are then
instances of PARTITION. so that. if we could solve AEP. we could solve PARTITION.

Thus, since this efficiency problem is NP-hard. I cannot expect the robot teanis
to be able to derive an optimal action selection policy in a reasonable length of time.
Thus, I focus my efforts on heuristic approximations to the problem that work well
in practice.

4.4 The L-ALLIANCE Learning and Efficiency
Mechanism

The L-ALLIANCE approach to improving efficiency while preserving fault tolerance
is based on a key assumption stated in section 4.2: the quality of a robot's recent
performance at a task is a reasonable indicator of its exp1)ected performiance in the
future. To measure the quality of task performance, I use the metric of the til)
required to perform a task, which in this case I assume to be equivalent to the energy
required to perform a task. Although other performance metrics are certainly possible,
it is crucial Ihat the chosen quality be observable by robots on the team, since each
robot must assess the performance of its teammates in order to detect, improvements in
performance or robot failures, and thus alter its action selection accordingly. However.
as has been stressed repeatedly in this report, robots will indeed experience failures
oi' changes in capabilities during a mission, or across missions: thus the measure of
past performance cannot be guaranteed to predict future performance. Robots must
therefore use their knowledge about previous performance only as a guideline, and
not as an absolute determinant of the abilities of robot team members.

An integral part of the L-ALLIANCE learning mechanism, then, requires each
robot team member to use the given quality metric to monitor its own performance
and the performance of its teammates as each robot executes its selected task. Since
environmental variations and sensory and effector noise undoubtably cause perfor-
mance to differ somewhat each time a task is executed, L-ALLIANCE requires the
robots to maintain an average and a standard deviation of performance for each robot.
for each task it performs, for a small number of trials. Determining how many trials.
P, over which to maintain this data depends upon the desired characteristics of the
robot team [Pin et al., 1991]. Maintaining an average over too many trials results in
a slow response to changes in robot performance. On the other hand. maintaining
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an average over too few trials does not provide a reasonable predictor of future per-
formance. My experiments have shown than an average over about 5 trials results in
good predictive capability, while still allowing the robots to be responsive to failures.

Let us now assume that robots have managed to learn this information about the
abilities of their teammates. How do they use this information to help them select
their own actions? A number of factors make this question challenging to answer.
The information robots have on their teammates* expected performances is uncertain
information. Nevertheless, I want the robots to respond to the failures of other robots,
while not being too quick to interrupt another robot's activities. Likewise, I want a
robot to acquiesce its current activity if it. has indeed failed, but I do not want it to
be too "meek", when it could actually complete the task if it had just a little more
time. How does a robot decide whether to interrupt another robot that is working
on a task that the first robot thinks it can do better, even though the second robot.
is still making progress towards task completion?

To address this problem, I examined three issues:

1. How does a robot obtain performance quality measurements?

2. In what order should a robot select tasks to execute?

3. How does a robot know when to give up on others or on itself?

Subsections 4.4.2, 4.4.3, and 4.4.4 below address the L-ALLIANCE general ap-
proach to answering these three questions. Subsection 4.6 describes the explicit mech-
anisms for implementing this general approach in the L-ALLIANCE architecture by
describing the L-ALLIANCE formal model. However, I first comment on the dis-
tributed nature of ALLIANCE and L-ALLIANCE, emphasizing its differences with
a more centralized robot controller. It is important to keep this distinction in mind
as the issues of learning and efficiency are discussed in the remainder of the chapter.

4.4.1 The Distributed Nature of ALLIANCE and L-
ALLIANCE

When discussing the control strategies of L-ALLIANCE, it is very tempting to de-
scribe the mechanisms from a global perspective, both at the level of the entire team's
selected actions, and, in particular, at. the level of an individual robot's action selec-
tion. This is understandable, since as humans, we tend to want to attribute a central-
ized will or decision-making capability to automatons exhibiting complex behavior.
Thus, when a robot controlled with ALLIANCE or L-ALLIANCE activates some
behavior set, it seems natural to describe that process as the result of a centralized
decision-maker. One might imagine that such a decision-maker considered all of the
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tasks that the robot could perform, analyzed the possibilities in light of the current
actions and potential capabilities of the robot's team members and the current envi-
ronmental feedback, perhaps used some objective function to optimize some metric,
and then selected the action that maximizes the objective function. As described in
chapter 3, however, the mechanism used in ALLIANCE and L-ALLIANCE for action
selection within an individual robot is not a centralized mechanism, but rather a dis-
tributed mechanism in which the motivational behaviors interact, to cause a robot to
select its next action. Thus, the phrase "the motivational behaviors interact to cause
a robot to select its next action" is more indicative of the underlying process than
"the robot selects its next action". Nevertheless, for the sake of conciseness, I often
use the later phrase in this report as a shorthand for the former.

It is important to note that although the L-ALLIANCE approach could be imple-
mented on each robot as a centralized controlling behavior, doing so wc,1Ad violate the
robustness and fault tolerant design principles set forth in chapter 1. Having any sort
of centralized process responsible for obtaining all of the performance quality measure-
ments of robot team members, then using this information to update the parameters
of motivational behaviors would place the robot at risk of complete breakdown if the
one controlling module were to fail. In addition, a centralized decision-maker does
not scale well for larger numbers of tasks, since each additional task that could be
performed must be considered in light of the robot's previous abilities and all other
team member capabilities. Fairly quickly, then, the centralized decision-maker has
too much work to do to effectively control the robot, leading to the classical problems
of traditional robot control architectures (see chapter 8 for a further discussion of
this issue). Distributing the control mechanism in ALLIANCE and L-ALLIANCE
actually makes it quite easy to handle increasingly complex robot missions; one needs
simply to provide additional processors over which the motivational behaviors can be
divided to allow arbitrarily large numbers of tasks to be monitored and controlled.
With ALLIANCE and L-ALLIANCE one thus eliminates the control nightmare of
software modules growing arbitrarily large to handle increased mission sizes.

Of course, distributing the knowledge across many motivational behaviors can
make the control problem much more difficult. How does one cause the motivational
behaviors to interact such that each robot selects the actions it is most suited for, and
so that all tasks become complete? The challenge is in the two layers of emergence, or
what I refer to as the "doubly-distributed" nature of ALLIANCE and L-ALLIANCE:
the interaction of the motivational behaviors on an individual robot must. be designed
to allow the emergent interaction of the team members' actions to result in the most.
efficient execution of the mission possible. This is the challenge addressed in the
remainder of this chapter.
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4.4.2 Obtaining Performance Quality Measurements

Of central importance to the learning mechanism used in L-ALLIAN(E is the abil-
ity of robots to monitor, evaluate, and catalog the performance of team members in
executing certain tasks. Without. this ability, a robot must rely on humani-supplied
performance measurements of robot team members. In either case, once these per-
formance measurements are obtained, the robot team members have a basis for de-
termining the preferential activation of one behavior set. over any other either for the
sake of efficiency, or to determine when a robot failure has occurred.

The degree to which robot team members can actively pursue knowledge concern-
ing team member abilities depends on the type of mission in which they are engaged.
If they are on a training mission, whose sole purpose is to allow robots to become
familiar with themselves and with their teammates, then the robots have more free-
dom to explore their capabilities without concern for possibly not completing the
mission. On the other hand, if the robots are on a live mission, then the team has
to ensure that the mission does get completed as efficiently as possible. Even so, as
they perform the mission, they should take advantage of the opportunity to find out
what. they can about the robot capabilities that are demonstrated.

Thus, one of two high-level control phases are utilized for robot team members
under L-ALLIANCE, depending upon the type of the team's mission. During training
missions, the robots enter the active learning phase, whereas during live missions, they
enter the adaptive learning phase.

Active Learning Phase

Clearly, the only way robots can independently learn about their own abilities and
the abilities of their teammates is for the robots to activate as many of their behavior
sets as possible during a mission, and to monitor their own progress and the progress
of team members during task execution. Of course, on any given mission not all
of the available behavior sets may be appropriate, so it. is usually not. possible to
learn complete information about robot capabilities from just one mission scenario.
However, the active learning phase allows the team to obtain as much information as
possible through the active exploration of robot abilities. In this phase, the robots'
motivational behaviors interact to cause each robot to select its next action randomly
from those actions that are: (1) currently undone, as determined from the sensory
feedback, and (2) currently not being executed by any other robot, as determined
from the broadcast communication messages.

While they perform their tasks, the robots are maximally patient and minimally
acquiescent, meaning that a robot neither tries to preempt another robot's ongoing
task, nor does it acquiesce its own current action to another robot. Since robots at the
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beginning stages of learning do not vet know how long it may take them to perform
their tasks, this maximal l)atience/mininial acquiescence feature allows them to tr*"
as long as needed to accomplish their tasks. Of course, if a robot has the ability to
detect failure with certainty, then it can give up failed tasks to another team member.

During this active learning phase. each of a robot's motivational behaviors keeps
track of the average time plus one standard deviation in the time required for that
robot to perform the task corresponding to that mot ivational behavior's behavior set 1
The motivational behavior is also responsible for cataloging the times and standard
deviations required by other robots to perform that same task. In the case of robot
failure, the actual time attributed to the failed robot is some penalty factor (greater
than 1) times the actual attempted time. As stated earlier, the number of trials, i.
over which the average is maintained is fairly small, in my experiments, maintaining
information over about 5 trials provided good results. It is important to note here
that a robot ri does not keep track of the task completion times for capabilities of
other robots that ri does not share. This allows the L-ALLIANCE architecture to
scale favorably as the mission size increases.

Adaptive Learning Phase

When a robot team is applied to a "live" mission, it cannot afford to allow members
to attempt to accomplish tasks for long periods of time with little or no demonstrable
progress. The team members have to make a concerted effort to accomplish the
mission with whatever knowledge they may have about team member abilities, and
must not tolerate long episodes of robot actions that do not have the desired effect on
the world. Thus, in the adaptive learning phase, the robots acquiesce (give up tasks)
and become impatient (take over tasks) according to their learned knowledge and
the control strategies described in the remainder of this chapter, rather than being
maximally patient and minimally acquiescent as they are in the active learning phase.
However, the motivational behaviors of each robot continue to monitor the robot's
and other's performances during this phase, and update the average task completion
times and standard deviations for the most recent /t trials.

4.4.3 Ordering Task Execution Based on Quality Measure-
ments

Once a robot has learned quality measurements of its own performances and those of
its teammates, how do the motivational behaviors of that robot, interact to cause the

1The average time plus one standard deviation required for robot rk to perform task hi(aij), as
measured by robot ri, is referred to as task-Jimei(j, k) in the L-ALLIANCE formal model.
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robot to select its next action to pursue? For now,. I deal strictl y with tile probleml
of how a robot determines which task to p)erforml from a set of incomlplete tasks that
are not. currently being attempted by any other robot. The next subsection (teals
with the issue of interrupting a robot's actions to recover from failures or to further
improve the efficiency of the mission.

The answer to this action selection question largely determines the efficiency with
which the robot team can perform its mission. The ideal is for the motivational
behaviors to interact to cause each robot to select its tasks in such a way that the team
as a whole minimizes the time or energy required to accomplish its mission. However,
each robot is working with incomplete global information, since it at best knows
solely about its own abilities to perform certain tasks and the quality with which its
teammates perform those same tasks. In addition, each robot has a restricted view
of the scope of the mission, since it can only sense the need for those actions that
it is able to perform, robots are completely ignorant, of any other tasks required by
the mission that teammates may have to execute. But as I have already noted, the
ALLIANCE learning problem is NP-hard. and thus we could not expect the robots
to be able to derive an optimal selection of actions even if they did possess complete
global information.

I investigated a number of approaches to this task ordering problem. My overriding
concern in evaluating these approaches is the degree of vulnerability of the robot team
to any type of component failure - either the failure of robots or, in particular, the
failure of the communication system. If the robots are absolutely dependent upon the
communication system to perform anything useful, then all of my efforts in creating
robust, reliable, flexible, and coherent teams are lost with one component failure.
Indeed, communication failure is not a problem to be taken lightly, as applications
performed in the real-world offer many more challenges to the communication system
than are present in, say, multi-processor communication2 . Thus, robots cannot be
required to wait to be "awarded a bid" (see chapter 8). or to receive permission from
some other robot via a communicated message before starting on a task, because if
the communication mechanism failed, the robots would accomplish nothing.

I therefore investigated three approaches in which each robot's next action selec-
tion is based upon the expected execution time of the tasks it is able to perform. or
upon a random selection of actions. The following subsections describe these three
task ordering approaches, which I call Longest Task First, Modified Shortest Task
First, and Random Task Selection. Section 4.5.2 investigates the relative perfor-

"2As anecdotal evidence of this problem, at a recent, AAAI robot competition [Dean and Bonasso,
1993, pg. 39] held in what most would consider to be a very controlled environment, communication
failure due to extreme RF noise from portable microphones, transmitters, two-way radios, and
halogen lighting dimmers and starters caused havoc for several of the competing robots.
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mances of these approaches.

Longest Task First

In the multi-processor scheduling community. a centralized greedy approach called
Descending First Fit has been shown to result in mission completion times within
22'X of optimal (Carey and Johnson. 1979] for identical processors. In this approach.
the tasks are assigned to processors in order of non-increasing task length. Thus. I first.
attempted a distributed version of Descending First Fit to determine its effectiveness
for our multi-robot application domain. The distributed version, which I call "Longest
Task First". requires each robot to select as its next task that which is expected to
take the robot the longest length of time to complete. The mechanism utilized to
implement this approach is to have the 6-fastij(t) and b-slou'ij(k. t) parameters of each
motivational behavior to grow at a rate proportional to the expected task completion
time (i.e. larger task times imply faster rates of impatience). The philosophy behind
the Longest Task First approach is that the mission cannot be completed any quicker
than the time required to execute the longest task in the mission. Thus, the team
may as well start with the longest task and perform as many of the shorter tasks in
parallel with that. task as possible.

However, this distributed Longest Task First approach turned out to be disas-
trous for heterogeneous cooperative teams in which robot failures can occur. Recall
that robots in the most general cooperative teams satisfy condition 4, which states
that different robots are different, and thus may perform the same task with quite
different levels of performance. The result for these teams using the Longest Task
First approach was that in general, each task in the mission was completed by the
robot team member with the worst ability to accomplish that task.

Modified Shortest Task First

As a logical next step to this approach, I studied the dual of the Longest Task First.
approach - Shortest Task First - in which the motivational behaviors interact
to cause each robot to select as its next action that which it expects to perform the
quickest. The centralized version of this greedy approach for identical multi-processors
has been shown to result in minimizing the mean flou, of the mission, which means
that the average completion time of the tasks in the mission is minimized [('onwav
et al., 1967]. However, I do modify the pure Shortest Task First technique a bit to
compensate for the fact that heterogeneous robots have different sets of tasks which
they are able to pursue. If a mission includes tasks that can only be accomplished by
one robot, then it makes sense for that robot to first select the actions which it alone
is able to accomplish. Extending this principle even further, I can require a robot
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to first select from among those actions which it expects to perform better tihan an'y
other robot, on the team, and only after these tasks are complete cont intie on to select
tasks which the robot expects other rol)ots on the team could accomplish quicker. In
this second case. I prefer a robot to at least attempt tasks that it may not perform as
well as other robot team members rather than remaining idle while the better robots
are working on other tasks. Even with their inferior capabilities. the slower robots
may still be able to complete tasks during the time in which the better robots are
occupied with other tasks. thus reducing the overall mission completion time.

Thus, the interaction of the motivational behaviors under the Modified Short-
est Task First. approach effectively divides the tasks a robot can perform into two
categories:

1. Those tasks which robot. ri expects to be able to perform better than all other
robots present on the team.

2. All other tasks ri can perform.

This two-category mechanism works via the lca-i-n(Ld_roboLinflu nc function defined
in the formal L-ALLIANCE model in section 4.6, which initially "blinds" the robot
to those tasks in the second category. This causes the robot to first select from among
those actions which it feels it can perform better than any other robot, team member.
If no tasks remain in the first category, the robot is initially satisfied that the tasks
will be accomplished by other team members. However, I do not want the robot to
sit. around doing nothing forever just because other team members might possibly be
able to accomplish the tasks in the second category. I remedy this by having each
robot also be motivated by a boredom factor. which increases whenever the robot
is doing nothing. Once the boredom factor gets high enough, it causes the robot
to "forget," that another robot, is present that can perform one of the actions in the
second category. thus leading the robot to select some pertinent action. The robot
then continues task execution in this manner until the mission is complete.

The selection of the shortest task within each category is accomplished by two
parameters in the L-ALLIANCE formal model: 6 slowij(k, t) and 6 ._fastij(t). These
two parameters provide the rate of impatience of a robot to perform some task either
when another robot is performing the task, or when no other team member has begun
the task, respectively. Thus, to cause a robot to select the task it expects to perform
the quickest, these rates of impatience for each behavior set should grow at a rate
inversely proportional to the expected task completion time - that, is, small task
completion times have large rates of impatience. Section 4.6 discusses the details of
how this is implemented.



4.4. THE L-ALLIA.NCE LEARNING ANID EF'I('IEN(" .WE('IIANISA! $7

Modified Random Task Selection

As a baseline against which to compare the other al)i)roaches. i also studied a random
selection of tasks. In this case, tihe motivational behaviors of the robots effectivelv
divide the tasks into the same two categories used in the Modified Shortest Task
First approach. However. in this case. the motivational behaviors work together in
such a way that tasks are rarlndomly selected. initially from the first category, and
then from the second category of tasks. The results from this studY. described in
section 4.5.2, were act ually quite enlightening, leading to the task ordering approach
discussed next.

4.4.4 Knowing When to Give Up

The third major issue in L-ALLIANCE is providing each robot team member with the
ability to determine when it should become impatient with other robot performances.
and when it should acquiesce its own current action. This issue affects not only the
robot team's response to failures and difficulties in the environment, but. also the
efficiency of the action selection. If these impatience and acquiescence factors are set
too low, then the robot team thrashes between tasks, perhaps seriously degrading the
team efficiency. On the other hand, if these factors are set too high, then the robot
team wastes time, and perhaps energy. waiting on a. failed robot to complete a task.

Three primary parameters in L-ALLIANCE determine a robot's response to its
own or to other robot performances: j;(k. ) (robot, impatience). oij(l) (robot ac-
quiescence to another robot), and Aij(t) (robot acquiescence to try another task).
The first two parameters concern a robot's response to the actions of its teammates,
whereas the third (Aij(t)) affects a robot's response to its own performance in the ab-
sence of impatient team members. A number of different, strategies for setting these
impatience and acquiescence rates can be used. all of which are based upon the knowl-
edge each robot gains about its own abilities and/or the abilities of its teammates.
Predicting the relative merits of these strategies, however, is more difficult, since a
number of factors influence the team's performance, such as the size of the team, the
size of the mission, the degree of task coverage, and the extent of robot heterogeneity.
Therefore, I conducted a number of studies of these strategies in combination with
the various approaches to ordering task execution discussed in the previous section.
Section 4.5 discusses the results of these investigations. However. I first, introduce
the three strategies I investigated in the following subsections: these strategies are
summarized in table 4.1.
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Three Impatience/Acquiescence Update Strategies

St rat egy Impatience (oj( k, t)) Acquiesceice ( u.1,( I))
I own time own time
II own time minimum time of teani

III time of robot performing the task own time

Table 4.1: Basis for setting the impatience and acquiescence parameters for a given
task within a given robot, for each of three strategies.

Strategy I: Distrust Performance Knowledge about Teammates

The first. impatience/acquiescence parameter update strategy takes a minimalist ap-
proach to the problem by only requiring the robot to use the knowledge it learns about
its own performance, robots are not required to know anything about. the capabilities
of their teammates. This strategy is the one most likely to be used when a robot
team is first formed - that is, before the team members have had an opportunity
to learn about their teammates' capabilities. This strategy can also be used when
robots have little confidence in the knowledge that. they have learned about other
robots, perhaps due to significant environmental changes that have rendered earlier
quality measurements invalid.

Under strategy I, a robot holds other robots to the same standard by which it,
measures itself. Thus, if a robot ri knows that it should be able to complete a certain
task hi(aij) in a certain period of time t, then it becomes impatient with any other
robot rk that does not complete hi(aij) in that same period of time. Of course, since
ri is holding itself to its own standards, then it is willing to acquiesce its task after
working on it for a period of time t without task completion.

The expected group behavior resulting from strategy I is for better robots to begin
execution of tasks being pursued by worse robots, but only after the worse robots
have attempted their tasks for a period of time determined by the better robots' own
expected performance time. However, a worse robot. will not be willing to give up its
task until it feels it has had a fair chance to complete the task according to its own
performance expectations. As it turns out, this mismatch between impatience and
acquiescence rates across robots leads to energy inefficiencies due to more than one
robot working on the same task at the same time.

Strategy II: Let the Best Robot Win

The second strategy for setting the impatience and acquiescence factors endows the
robot team with the character of "striving for the best". Under this strategy, a robot
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holds itself to the performance standard of the b>est robot it knows albout in the group.
for each task to be accoml)lished. Thus, if a robot ri has learned that the quickest
expected complletion time required 1nv a robot team miienlber for a task hi(a(,) is 1.
then ri will acquiesce task hi(ai,) to another robot if ri has att enmpted h1i(u,'i) for a
time longer than t. On the other hand, robot r1i will b)ecome impatient with a robot
r1, which is performing task hi(aij) only after 1'k has atteml)ted the task for a longer
period of time than r'i believes that it. itself. needs to accomplish hi(aij ).

Implicit in this strategy is the assumptionl b* an acquiescing robot that other
robots know their own performance levels better than does the acquiescing robot.
Their behavior can be summa.rized with the statement: *If I think I'm not doing
very well, and you think you can do better, then I'll give up.- In this strategy.
the acquiescing robot rk does not compare its own expected p)erformance with its
knowledge about the expected performance of the impatient robot, 1i. If it did. r1k
might. a.t times find that it expects ri to actually perform the task worse than I'k could.
However, since rk assumes that ri has better knowledge about vris abilities than r1k

does, rk gives up its task.
The expected group behavior resulting from strategy II. then, is for better robots

to take over tasks from worse robots, with the worse robots giving up their tasks
when they feel that (1) they are not successful, and (2) that another robot, on the
team can do a better job.

Strategy III: Give Robots a Fighting Chance

The third strategy that I introduce for updating the impatience and acquiescence fac-
tors results in a "kinder and gentler" robot team that judges performances of robot
team members based on each team member's own individual expected performance.
rather than its comparison to other team members' performances. Under strategy
III, a robot ri becomes impatient with robot, rk's performance only after rk begins
performing worse than its (rk's) normal abilities. Otherwise, robot. ri will not become
impatient with rk, even if ri expects that it could perform rk's task much better.
Likewise, each robot expects the same courtesy, and is therefore unwilling to acqui-
esce its own action until it. believes it has had a fair chance to accomplish the task.
according to its own expected performance requirements.

Thus, the expected group behavior resulting from strategy III is for robots to ex-
hibit a first-come-first-served approach to action selection, not interrupting other
agents nor acquiescing to other agents until deteriorated functionality is demon-
strated.
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4.5 Experimental Investigations of Control Strate-
gies

The two key issues that must b~e resolved in L-ALLIAN(VE are (let erniiiiing the relative
perfornmances of the three iml)atience/ac(quiescenice update strategies introduced ill
section 4.4.4 and determining the alppropriate task ordering the rolbot teanm should
use to maximize efficiency. This section presents my empirical investigations of these
two issues. As a result of these investigations, I discovered a fourth approach to
task ordering which, combined with the appprop)riate impatience/acqluiesceiice update
strategy, results in more efficient team performances. I then compare the results of
this best. approach (called strategy IV) to the optimal solution for those problenms in
which the optimal solution can he computed.

4.5.1 Effect of Impatience/Acquiescence Update Strategy

As I discussed in section 4.4.4, a number of strategies are possible for up)dating the
robot impatience and acquiescence parameters based on information learned about
robot performance. Three in particular that I investigated are Distrust Performance
Knowledge (Strategy I), Let the Best Robot Win (Strategy II), and Give Robots a
Fighting Chance (Strategy III). In these experiments, I used the Modified Shortest
Task First approach to ordering tasks described in section 4.4.3. This approach to
task ordering is varied in the next subsection.

To determine the relative merits of these strategies, I ran a. large number of test
runs in simulation, comparing the results of the strategies in terms of the time and
the energy required to complete the mission. In this study. simulation runs offered
much more opportunity to study the effects of a number of factors on the performance
of the three strategies than would be possible using our laboratory's limited number
of physical robots with relatively fixed physical capabilities. In these experimental
runs, I investigated the performances of the strategies as functions of the relative task
coverage, the relative mission size, the degree of heterogeneity across robots, and the
number of robots. As we shall see in the remainder of this subsection, I discovered
that each of the three strategies works well in some situations, but. not as well in
others.

Data Collection Methods

In making observations about the relative performance of the three strategies, it is
important to not generalize conclusions based on too few specific examples, since the
outcome of any specific example can often be quite different from the average perfor-
mance of the strategies over a range of similar mission scenarios. Thus, I collected the
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data by first varying the number of robots on the team (ii) from 2 to 20. the number
of tasks the team must p)erform (m) from I to 10. the task coverag, from I to 10.
and the heterogeneity fIrom 0 percent to 31200 percent:'. For this study. I composed
the missions of comlpletely independent subtasks involving no ordering constraints.
I distributed tie capabilities uniiormlv across the robots based upon the give'n task
coverage, and I assumed t lie same task coverage for all tasks required 1)'" the mission.
To obtain a given percent of heterogeneit y .r, I first randomly selected a task length.
1. between 0 and 500 for a given task, 1, and then, for each robot r with the ability

to perform that task, the length of time required for r to complete t was defined to
be 1 x (1 + ' x yq) where y is a number between 0 and 1. chosen randomly for each

robot,, for each task. Thus, a given degree of heterogeneity. x. means that any two

robots sharing the ability to perform a given task can vary up to .xVi in the time

required for themn to complete that, task.

In this study, I did not address the issue of robot failure directly. However, the
strategies I studied here do not, cause robots to distinguish between task failure in
other robots and slower completion times in those robots. Thus, since a task failure
is treated no differently from a less efficient robot,, I can view robot failures a-s being
included in the heterogeneity difference across robots.

For ease of discussion throughout this section, I define a sccnario as a 4-tuple
(n. in, task-covirage, h/tcrogeneity) of a given run of this simulation. Then, for any
scenario defining the number of robots, the size of the mission, the level of task
coverage, and the percent of heterogeneity, I ran 200 different test. runs, varying the
assignment of tasks to robots and the quality of their performance randomly according
to the given values of task coverage and heterogeneity. The average over these 200
runs was then considered the characteristic performance of that scenario.

Results and Discussion

In analyzing the data from these test runs, it became apparent that the performance
of the strategies was dependent upon all of the factors I studied: the relative task
coverage, the relative size of the mission, and the degree of heterogeneity in the
robots. (By rclatit, mission size and task coverage, I mean the mission size and task
coverage normalized by the number of robots on the team.) The performance was

'In this context, robot team members can actually be heItrogencous in two obvious ways: (1)
they can have different behavior sets that give them the ability to perform different tasks, and
(2) they can share the ability to perform the same task, but demonstrate different. qualitics of
performance of that task (e.g. the time required to complete the task may vary). For this study.
the first type of heterogeneity is included in the task coverage of the team. Thus, when I speak of
varying heterogeneity in this subsection, I am referring to the degree of difference in the qualities of
performance of the same task by the subgroup of robots which can perform that task.



92 CHAPTER 4. L-ALLLANCE: IMPROVING EFFICIENCY

also dependent upon the degree to which condition 3 - Progress When Working (as
introduced in chapter 3) - was assumed to hold. If the effect of the robot's actions
cannot be sensed through the world until the task is completed, then reassigning the
task to another robot requires the second robot to completely re-do the first robot's
actions. In this case, the Progress When Working condition (foes not hold. On the
other hand. if the robot's actions can be fully sensed through the worid. then a robot
that takes over another robot's actions only has to complete the remainder of the task.
thus avoiding duplication of effort. Here, the Progress When Working condition doc.s
hold. In between these two extremes lie situations requiring a. duplication of some,
but not all of the actions taken by the first robot to accomplish the now-acquiesced
task. In this study, I consider the effects of the two extremes on the performance of
the three impatience/acquiescence strategies.

As I discuss these results, it is helpful to keep in mind two primary differences in
the operation of these three strategies. They differ in:

1. The method which determines which robot from a group of idle robots gets to
perform a task not yet underway (i.e. the initial action selection choice).

2. The method by which a robot overrides the performance of another robot.

I explain my results in terms of these two primary differences between the strategies.
To analyze the results of a given scenario, I noted the comparative performances

of the three impatience/acquiescence update strategies of that scenario at the point
(task-coverage/n, m/n) on a plot of relative task coverage versus relative mission
size. Repeating this process for all of the scenarios results in the time and energy
profiles shown in figures 4-1 and 4-2, respectively. Let us examine these results in
more detail.

I first note that the three strategies are equivalent for teams in which the degree of
heterogeneity is 0, regardless of any other factors, because I have assumed a uniform
distribution of tasks across robots for a given task coverage. Thus, since any robot
can perform any of its tasks as well as any other robot, the action selection strategy
does not matter as long as robots do indeed select tasks to pursue. Since all of these
strategies do cause robots to pursue some incomplete task, we observe no differences
when the degree of heterogeneity is 0.

For all other robot teams, however, four distinct areas of relative strategy perfor-
mances are found in terms of both time and energy usage, as shown in figures 4-1
and 4-2: regions 1, 2. 3. and 4. Each of these regions are defined in terms of the ratio
of task coverage to mission size (m), as follows:
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Figure 4-1: Summary of time usage for three impatience/acquiescence strategies. In

this and in the next figure, the strategy numbers (I, II, III) in large parentheses

indicate the relative performance of the three strategies in each of the regions, where
the first row in parentheses indicates the best performer(s). The four points noted
with small black squares are exemplar misions of their corresponding regions, whose

time and energy usages are shown in figures 4-3 through 4-10. The values in the
small parentheses by each of these four points describe the corresponding cooperative

scenario by giving the number of robots, the number of tasks, and the task coverage

(in that order) used in the exemplar.
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Energy Usage
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Figure 4-2: Summary of energy usage for three impatience/acquiescence strategies.
(Refer to the previous figure for an explanation of the notation.)
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Region 1: 1.0 < task-cottrag(/n
Region 2: 0.4 < task-cov'ragl/m < 1.0
Region 3: 0.1 < task-covcragl/m < 0.4
Region 4: 0.0 < task_cotrrag/n? < 0.1

Intuitively, region 1 corresponds to those scenarios in which many robots are
able to perform a relatively low number of tasks. In this region, not enough work
is available to occupy all the robots; thus, the primary issue is determining which
robots will be "allowed" to perform which tasks. As we progress to regions 2, 3.
and then 4, we encounter scenarios in which progressively fewer robots on average
are available to perform any given task in the mission. As we shall see, the averagu
number of robots that "compete" to execute each task plays a large role in the relative
performances of the three impatience/acquiescence update strategies. Of course, the
boundaries between these regions are not crisp, as the transition from one region to
the next is smooth. Nevertheless, they do indicate general trends that are interesting
to understand.

First let us consider region 4, which consists of those scenarios involving a very
low task coverage to mission size ratio. What we discover in this area is that the
choice of impatience/acquiescence update strategy makes no difference to the team
performance because, in this region, either robots have virtually no overlap in their
abilities, or the mission is large enough that robots need not "compete" for tasks to
perform. Low overlap in abilities implies that only one allocation of tasks to robots is
possible, and thus the controlling strategy makes no difference. Figures 4-3 and 4-4
show a typical time and energy performance of the strategies for scenarios in region
4.

Now let us consider the relative performances of teams controlled by the three
strategies in region 1. Figures 4-5 and 4-6 illustrate a typical performance of the
three strategies for scenarios in this region, showing the time and energy results of
four robots performing two tasks, in which 75% of the robots have the capability to
perform each task. This combination of task coverage and mission size indicates that
most of the robots on the team are able to perform most of the tasks required by the
mission. However, because there are so few tasks to perform per robot, the overall
group performance is very much dependent upon the initial action selection choice of
each robot, rather than the method by which the robots elect to override the actions
of teammates. Some robots may elect to perform a task, while other robots may
elect to remain idle due to the presence of team members that are thought to be able
to accomplish the tasks more efficiently. Under strategy I, all robots select the task
which they expect to be able to complete the quickest, without the use of knowledge
about the capabilities of teammates. If more than one robot selects the same action,
the fixed tie-breaking mechanism determines which robot wins, regardless of their
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Figure 4-3: An average time performance of the three impatience/acquiescence strate-
gies in region 4. Each data point shown in this and in the next 7 figures is an average
value over 200 runs of the corresponding scenario. Refer to the text for more details.
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Figure 4-4: An average energy performance of the three impatience/ acquiescence
strategies in region 4.

relative capabilities. Thus, each task may not be executed by the robot which can
perform that task the best.

On the other hand, under strategies II and III, robots select their actions with
regard to the expected capabilities of their teammates. Thus, robots are initially
motivated to perform only those tasks that they should be able to complete quicker
than any other robot team member. Since so few tasks are to be performed relative
to the size of the team, it is quite likely that on average, each task will be completed
by the robot who can perform that task most efficiently. Thus, strategies II and III
perform much better than strategy I in region 1 in terms of both time and energy.

As we move into region 2, an interesting phenomenon occurs with the relative
performances of the three strategies. Moving away from region I into region 2 means
that the relative performances of the strategies will be affected not only by the initial
action selection choice which influenced the performance in region 1, but also by
the mechanism by which robots override the performances of their teammates. The
override mechanism becomes more important in this region because there are fewer
available robots per task - on average less than one, but greater than about .4. This
in turn means that some of the robots will make more than one action selection,
while the remaining idle robots will be watching to override their performance if the
successive rounds of action selection do not result in the better robots working on



98 CHAPTER 4. L-.ALLIAN('E: IMPROVING EFFILE.\ YT

"2M • 4 Robots, 2 Tasks, Task Coverage =3
E

2400 0

E _

8 2 • .
. l 8ow - ...... * S I rale • J I "1, €

1800 0f-o twg
.5.

1400

1200

iz 1000

0 2 4 6 8 10 112 14 16 18 20 22 24 28 28 30 32
Heterogeneity in robot abilities when overlapping

Figure 4-5: An average time performance of the the three impatience/acquiescence
strategies in region 1.
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Figure 4-6: An average energy performance of the three impatience/acquiescence
strategies in region 1.
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the tasks at which they excel. What we discover in this region, then. is that the
relative p)erformances of strategies II an(l III vary based Upon the heterogeneity of

the robots when they share task capabilities, and the degree to which the Progress
When Working condition holds.

An example helps illustrate this point. Let us suppose that a cooperative team is

composed of two robots, r, and r 2, both of which can perform the three tasks required
on the mission - a,, a.2. and a3. This scenario of two robots, three tasks, and a task
coverage of two lies at point (1, 1.5) on the time and energy profile graphs shown in
figures 4-1 and 4-2, and thus is in region 2. Further suppose that r, performs its tasks
very efficiently, requiring 75 time units to perform each of its tasks, whereas robot
r*2 is less efficient, requiring 100 time units to perform each of its tasks. Initially. r1
selects the action it can perform the quickest, say a,, and r2 sits idle for a while, since
it knows that it cannot perform its tasks efficientlv relative to the other robots on
the team. However, while r 2 is idle, its environmental feedback indicates that tasks
still need to be performed; thus, r2 becomes bored, leading it to elect to perform one
of the tasks not yet underway - say a2. In the meantime, assume r, completes a,.
goes on to also complete a3 , and is now waiting on r 2 to complete task a2. Under
strategy 11 ("let the best robot win"), r, would become impatient with r 2 after r2

had attempted the task for 75 time units, at which point r 2 would acquiesce task
a3. Similarly, under strategy I ("distrust performance knowledge"), ri would become
impatient with r 2 after 75 time units, although r 2 would not give up a 3 until 100 time

units had passed, leading to both robots performing a3 . Under strategy III ("give
robots a fighting chance"), r, would allow r 2 to continue its execution of a3 for 100
time units.

What affect does this have on the relative time and energy usage of the team in

region 2? The answer depends on the degree to which the Progress When Working

condition holds. First, let us consider the relative performances of strategies II and
III. Figures 4-7 and 4-8 show a typical performance of the strategies in region 2.
When the Progress When Working condition holds, robot will be able to fully sense

the effect of other robot's actions through the world. Thus, strategy II will outperform
strategy III in terms of both time and energy for any degree of heterogeneity (except

full homogeneity) because a quicker robot will take over the task from a slower robot
without having to duplicate the slower robot's actions. However, when the Progress

When Working condition does not hold, robots will not be able to sense the effect of

other robot's actions through the world until the task is complete. Thus, overriding
the action of another robot leads to the task being performed again in its entirety.

This is actually useful when robots are highly heterogeneous, since a. more efficient
robot will be able to perform the entire task in less time than the slower robot needed
to complete the task. But it is not useful when robots are only mildly heterogeneous,
since the time required for the faster robot to fully execute the task is longer than the
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Figure 4-7: An average time performance of the three impatience/acquiescence strate-
gies in region 2.

remaining time required for the slower robot to complete that task. Thus, strategy
II outperforms strategy III when the Progress When Working condition holds for
any degree of heterogeneity, or when the Progress When Working condition does not
hold, but the team is composed of highly heterogeneous robots. On the other hand,
strategy III outperforms strategy II for mildly heterogeneous teams when the Progress
When Working condition does not hold.

Now let us examine the performance of strategy I relative to that of strategies II
and III in region 2. As noted earlier, the override strategy plays a critical role in the
relative performances of the three strategies in this region. Since strategy I can often
lead to more than one robot attempting the same task at the same time, its relative
performance depends upon the degree to which the robots interfere with each other.
If we assume no interference, then the strategy I override mechanism is not harmful
in terms of time because the two robots merely continue working until one of them
has completed the task, regardless of whether or not the Progress When Working
condition holds. Strategy I therefore matches the time performance of the better of
strategies II and III in region 2 for any given degree of robot heterogeneity. However,
this same override mechanism causes strategy I to perform quite badly in this region
in terms of energy usage, due to these replicated actions.

Moving into region 3, we are presented with scenarios involving a fairly low ratio
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Figure 4-8: An average energy performance of the three impatience/acquiescence
strategies in region 2.

of task coverage to mission size. Figures 4-9 and 4-10 illustrate a typical performance
for the three strategies in this region. Here, missions involve plenty of work for each
robot to perform; thus, it does not make as much sense in this region for a robot
to override the performance of a teammate when there is a good deal of unfinished
work remaining to be accomplished. However, since strategies I and II do not make
a distinction between tasks not yet attempted and tasks being performed by poorer
robots, we find that strategies I and II tend to get bogged down trying to improve the
performance of other robots even when tasks are available that no robot is pursuing.
This turns out not to be a significant problem for the time metric when the Progress
When Working condition holds, since the the overriding robot need not repeat the
entire task. However, when the Progress When Working condition does not hold.
strategy II in particular is penalized, because the overriding robot has to repeat the
entire task, whereas with strategy IL both robots continue to work on the task until the
quickest robot has completed the task. Of course, this replication does hurt strategy
I in terms of energy usage, so it performs the poorest in this region for energy usage.
regardless of other factors. Strategy III does not suffer from this problem because it
does not cause a robot ri to override another robot just because ri thinks it (ri) can
perform the task quicker. Thus, it performs well in terms of both time and energy in
region 3.
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Figure 4-9: An average time performance of the three impatience/acquiescence strate-
gies in region 3, assuming the Progress When Working condition does not hold.

We can also note that heterogeneity does not play much of a role in the relative
strategy performances in this region. Again, this is due to the increased amount of
work available for each robot to perform, which causes robots to be better off working
on tasks that have not yet been started, rather than worrying about efficiency override
considerations due to heterogeneity.

In summary, we see that the performance of the three impatience/acquiescence
update strategies is dependent upon a number of factors: the relative task coverage,
the relative mission size, the degree of robot heterogeneity, and the degree to which
the Progress When Working condition holds. Tables 4.2 and 4.3 summarize these
results by giving the preferred strategy for each combination of these factors. What
we find is that strategies II ("let the best robot win") and III ("give robots a fighting
chance") perform well in a large proportion of the scenarios in terms of both time and
energy, whereas strategy I performs well in terms of time for many scenarios. As could
be expected, the reasons why the strategies perform poorly in some scenarios are the
same reasons why they perform well in others. For example, strategy II performs
well for highly heterogeneous robot teams because it is quick to override. Yet, it also
performs poorly in region 3 because it is too quick to override. Likewise, strategy III
performs well for mildly heterogeneous robot teams because it does not readily cause
overrides. However, when it performs poorly, it is because it causes robots to be too
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Figure 4-10: An average energy performance of the three impatience/acquiescence
strategies in region 3, assuming the Progress When Working condition does not hold.

slow to override.
These results suggest an alternative method as a variation on strategy II which

should improve its performance in region 3 when the Progress When Working condi-
tion does not hold. Under this alternative approach, robot ri should effectively divide
its tasks into the following two revised categories:

1. Those which robot ri expects to be able to perform better than all other robots
present on the team, and which no other robot is currently pursuing.

2. All other tasks ri can perform.

This division of categories should eliminate strategy II's poor performance in region
3 when the Progress When Working condition does not hold, thus making it more
suitable for general use. The remaining area, of poor performance for strategy II
- mildly heterogeneous robots in situations in which the Progress When Working
condition does not old - cannot really be fixed without. damaging the ability of the
team to respond to robot failures.
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Preferred Strategy: Time as Metric

Progress When Working? 1 Region i[eterogeneity 1 Strategy

Yes --- II or III
Yes 2 High or Mild 1 or II
Yes 3 1- I 1. or III
Yes 4 I. II. or III
No 1 1- Ior III
No 2 Mild I or III
No 2 High l or II
No 3 - lorIlI
No 4 - I, II, or III

- None I, II, or III

Table 4.2: Summary of preferred impatience/acquiescence strategies for time as the
performance metric. The preferred strategy is a function of whether the Progress
When Working condition holds, the number of robots (n), the task coverage, the
number of tasks (m) and the degree of heterogeneity when robot capabilities overlap.
The values of High, Mild, and None for degree of heterogeneity stand roughly for the
following: High is greater than 600%, Mild is less than 300%. and None is 0%.

Preferred Strategy: Energy as Metric

Progress When Working? II Region I[ Heterogeneity 11 Strategy
Yes 1 - II or III
Yes 2 High or Mild II
Yes 3 - II or III
Yes 4 I1 II, or III
No 1 - IIor III
No 2 Mild III
No 2 High II
No 3 1- Il
No 4 - I, II,or III

- None I, II, or III

Table 4.3: Preferred impatience/acquiescence strategies when energy is the perfor-
mance metric.
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4.5.2 Effect of Task Ordering Approach

As discussed in section 1.4.3, 1 initially investigated three approaches for allowing
a robot to determine which task to select from those tasks that are not alreadyv
being attempted by an\y robot - the Longest Task First al)proach. the Modified
Shortest Task First approach, and the Modified Random Task Selection approach.
I dismissed the Longest Task First approach quickly. since it gives dismal results
for heterogeneous robot teams in which failures occur. I then compared the relative
performance of the Shortest Task First approach with the simple Modified Random
Task Selection approach. If a simple random selection of the next task performs just
as well as the Modified Shortest Task First approach, then the control strategy would
be less dependent upon knowledge of other robot capabilities.

To investigate this question, I performed a similar set of simulation experiments
as discussed in the previous subsection. These simulation experiments allowed me to
vary the number of robots, the size of the mission, and the heterogeneity of the robots
in many more ways than would be possible on my available collection of physical
robots. In these experiments. I st.'idied the relative effects of tue Modified Shortest
Task First approach and the Modified Random Task Selection approach when us-
ing each of the three impatience/acquiescence strategies discussed in sections 4.4.4
and 4.5.1. As we shall see in the following sections, the Modified Shortest Task
First approach performed much better than the Modified Random Task Selection
approacli for teams controlled using impatience/acquiescence update strategy I (Dis-
trust Performance Knowledge about Teammates). and performed somewha.t better
than the Modified Random Task Selection approach for teams controlled using impa-
tience/acquiescence update strategy III (Give Robots a Fighting ('hance). However,
it actually performed worse than the Modified Random Task Selection approach for
impatience/acquiescence update strategy II (Let the Best Robot Win). The following
sections discuss these results.

Data Collection Methods

The data collected for these experiments was obtained using very similar methods
to those described in the previous subsection. The only difference is that in these
runs, the motivational behaviors interacted to cause the robots to select their next
action from category 1 (those actions the robot expects to be able to perform better
than any other team member) or from category 2 (all other actions the robot can
perform) using a random selection rather than a shortest task first selection. As
in the previous section, 200 runs for a given scenario (number of robots, number of
tasks, task coverage, and degree of heterogeneity) were averaged to derive a typical
performance for that scenario.
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Figure 4-11: Typical performance degradation due to Random Task Selection.

Results and Discussion

The results from this study proved to be quite interesting. One's first reaction might
be to assume that the Shortest Task First approach would exhibit improved perfor-
mance over the Random Task Selection approach regardless of the impatience/acquiescence
update strategy. However, this turns out not to be the case. Figure 4-11 shows a
typical outcome of this comparison, in terms of time, for a six-robot team with twelve
tasks to perform and a task coverage of four. (The energy outcome is similar.) As
this figure shows, although the Random Task Selection approach does degrade the
performance of teams controlled by strategies I and Il1, ;. actually improves the per-
formance of teams controlled with strategy II (Let the Best Robot Win).

The reason for this performance improvement for strategy II concerns the theo-
retical advantages of using the Longest Task First selection strategy that I dismissed
earlier. Recall that the Longest Task First approach should theoretically result in
shorter mission completion times for homogeneous robot teams because the longer
tasks are pursued first while available robots perform the shorter tasks in parallel.
However, I dismissed this approach for heterogeneous robot, teams which can perform
the same tasks with different qualities. The problem I encountered was that the
pure Longest Task First approach caused each task to be pursued by the robot with
the longest task completion time. However, if I modify this strategy so that robots
first effectively divide their tasks into the two categories I have described (category I
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tasks are those which the robot expects to be able to p)erform better thani any other
robot, and category 2 tasks are all the remaining tasks that robot, can perform). and
then use a Longest Task First mechanism to select among the category I tasks and a
Shortest Task First mechanism for selecting among the category 2 tasks, the problem
of heterogeneity is circumvented.

What I find is that the Random Task Selection approach for impa-
tience/acquiescence update strategy II actually moves the robot control toward a
Longest Task First approach, since any random selection of an action must result in
a longer task than that chosen with the Shortest Task First approach. However. since
the robot only uses the Longest Task First mechanism for tasks in category 1, we
do not run into problems due to heterogeneity. Thus, the performance of strategy II
actually improves with the Random Task Selection approach.

In fact, robots controlled with strategy III also experience improvement due to
this modified Longest Task First approach for the same reasoning. However, this
improvement is offset somewhat because robots in strategy Ili do not override the
performances of poorer robots that have selected tasks badly from category 2. Overall.
then, robots controlled using strategy III display poorer performance when using the
Random Task Selection approach.

Strategy I, however, does not benefit from the move towards the Longest Task
First approach, because a robot using this strategy does not have the information
required to segment its tasks into the two categories. Although such a robot does
have the ability to override a bad action selection of a poorer robot, the override
mechanism is not sufficient to overcome the degradation in performance due to poor
task selections by all robot team members. Thus, strategy I suffers the worst from
the Random Task Selection approach.

4.5.3 The "Winning" Distributed Control Strategy for Ef-
ficiency and Fault Tolerance

The results of the previous two subsections lead to an improved robot control strategy,
which I call Strategy IV. This strategy is based upon modifications to Strategy II as
suggested in the previous two sections. The resulting interaction of the distributed
motivational behaviors causes each robot ri to effectively do the following:

1. Effectively divide the tasks into two categories:

(a) Those tasks which ri expects to be able to perform better than
any other team member, and which no other robot is currently
performing.

(b) All other tasks ri can perform.
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Figure 4-12: Comparative time performance of strategy IV in region 4.

2. Repeat the following until no more tasks are left:

(a) Select tasks from the first category according to the Longest Task
First approach, unless no more tasks remain in category 1.

(b) Select tasks from the second category according to the Shortest
Task First approach.

If a robot has no learned knowledge about team member capabilities, all of its
tasks go into the second category.

Figures 4-12 through 4-19 show the results of strategy IV compared to the previous
three impatience/acquiescence strategies which used a Modified Shortest Task First
ordering of tasks. As these figures show, the new strategy IV performs as well or better
than any of the other three strategies in terms of both time and energy, regardless
of the size of the robot team, the size of the mission, the relative task coverage, the
level of heterogeneity on the robot team, or the degree to which the effects of robot
actions can be sensed through the world. The only very minor exception to this
statement is in region 2 for mildly heterogeneous robot teams in which the Progress
When Working condition does not hold; in this case, strategy III performs slightly
better.



4.5. EXPERIMENTAL INVESTIGATIONS OF CONTROL STRATEGIES 109

90M0
20 Robots, 40 Tasks, Task Coverage =2 '

E 80000

50O

4a 0000

30O

SC.'

2 0000.

10000

~0 0

0 2 4 6 8 10 12 14 16 18 22224268302
Deviation in robot abilities when overlapping

Figure 4-13: Comparative performance of strategy IV in region 4.
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Figure 4-14: Comparative time performance of strategy IV in region 1.
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Figure 4-15: Comparative energy performance of strategy IV in region 1.
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Figure 4-16: Comparative time performance of strategy IV in region 2.
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Figure 4-18: Comparative time performance of strategy IV in region 3.
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Figure 4-19: Comparative energy performance of strategy IV in region 3.

4.5.4 Comparison to the Optimal Solution

Since the learning problem is NP-hard, it is very difficult to compare the performance
of the L-ALLIANCE approach to the optimal result. The problem is exponential in
the number of tasks (O(n"'), for n robots and in tasks), and thus the optimal solution
becomes virtually impossible to calculate even for fairly small values of n and "?.
However, the optimal result can be calculated for many small problems in which the
value of nm is reasonable. I can then compare the results of the L-ALLIANCE control
strategy IV with the optimal solution. What we find is that L-ALLIANCE performs
quite well for these small problems.

This analysis was performed as follows. I composed triples (n. "i, task.-covurag)
of every possible integral combination of values4 for which tim was less than or equal
to 217. up to values of n equal to 17. Figure 4-20 plots the triples (496 of them)
for which I could calculate the optimal solution; these triples are plotted according
to their task -coverage/in ratio. Because of the exponential nature of the allocation
problem, the optimal result for any scenario in region 4 could not be computed. I then
performed 200 random runs corresponding to each triple, varying heterogeneity differ-
ences from 0 to 3200/(. and recording the time and energy usage of the optimal result.

4The limits of n < 17 and n"' < 217 were derived in an ad hoc fashion based upon the time
required to compute the optimal solution on our fastest available serial computer - a Sparc-10.
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and of the solution found by L-ALLIANCE strategy IV. The average of these 200 runs
then indicated the typical performance of the optimal and of the L-ALLIAN('E allo-
cations for that degree of heterogeneity. I then coml)uted the average percent worse
of the L-ALLIANCE solution over the optimal solution for each of the heterogene-
it" differences of that, scenario. This value indicates the relative performance of the
L-ALLIANCE strategy IV solution compared to the optimal solution for that triple.
Finally, I categorized that. triple into the appropriate time/energy protile region (see
figures 4-1 and 4-2) according to its task-cortragf/in ratio. I repeated this process
for all the triples, and then computed the average percent difference across each of
the four regions (actually. three regions. since I had no data from region 4).

Figure 4-21 shows the results, indicating the percent worse than the optimal result
for the scenarios in regions 1, 2, and 3 for both time and energy. A total of 331 sce-

narios make up the region 1 average. 139 scenarios make up the region 2 average, and
26 scenarios make up the region 3 average. These results indicate that L-ALLIANCE
performs quite well for these smaller scenarios - less than 20' worse than optimal for
any region, for either time or energy, with much better performance in region 1. The
worst-case performance in terms of time was for the scenario involving four robots.
eight tasks, and a. task coverage of three, which was 28% worse than the optimal;
this scenario is indicated in figure 4-20 by the large dot at location (.75. 2) in region
3. The worst-case performance in terms of energy was for the scenario involving five
robots, six tasks, and a task coverage of five, which was 25%, worse than the optimal:
this scenario is indicated in figure 4-20 by the large dot at location (1, 1.2) in region
2.

The key question, of course, is how seriously we should expect the performance of
L-ALLIANCE to degrade as the size of the problem increases. Strategy IV performs
particularly well in region 1 because, although the knowledge is distributed across
motivational behaviors, the robots are essentially using global knowledge in their
action selection due to the high task coverage and low mission size. However, as the
relative number of tasks to perform increases, the purely greedy approach cannot
always result in near-optimal performances because it will at times be more efficient
to make several less-than-optimal local task selections to arrive at a globally optimal
result. Quantifying how much worse L-ALLIANCE performance can be than the
optimal is difficult, however, and warrants further study. This is a primary topic of
future study.

4.6 Discussion of Formal Model of L-ALLIANCE

Now that the philosophy behind the L-ALLIANCE learning approach has been pre-
sented, let us look in detail at. how this philosophy is designed into the motivational
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usage required for the strategy IV distributed action selection technique against the
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problem is exponential in the number of tasks, the optimal results could not be derived
for any scenarios in region 4. The error bars indicate one standard deviation in the
performance differences.
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behavior mechanism. I organize this subsection by first discussing the threshold of
activation of the behavior sets, followed by a discussion of the parameter settings
pertinent to each of the sources of input to a robot's motivational behavior: sensory
feedback, inter-robot communication, suppression from active behavior sets, learned
robot influence, robot impatience. and robot acquiescence. In these sections, I dis-
cuss only those parameter issues in L-ALLIANCE that were previously ignored in mny
description of ALLIANCE. Chapter 3 provides the philosophy behind the basic AL-
LIANCE mechanism, which remains true for L-ALLIANCE. I conclude this section
by showing how the L-ALLIANCE inputs are combined to compute the motivational
levels. Appendix B summarizes the L-ALLIANCE formal model for easy reference5.

Threshold of activation

A parameter of key importance *o he efficiency of the robot team is the threshold of
activation, 0. This parameter is used not only to determine the motivational level at
which a behavior set is acti\ aced, but, more importantly, as a way of calibrating the
impatience and acquiescence rates across motivational behaviors and across robots.
Recall from section 4.5.3 that I want the interaction of motivational behaviors to result
in a robot selecting either the task it can perform the quickest or the task that requires
the robot the longest time to accomplish, depending upon the task category. Since
the L-ALLIANCE mechanism is distributed across several parallel processes, these
orderings can be accomplished by setting the 6..slowi 2(k, t) and 6-fasti1 (t) impatience
rates to values proportional to the expected completion times of their corresponding
tasks. However, these rates are meaningless if the behavior sets activate at different
levels, since a behavior set with a slower rate of impatience could activate before one
with a faster impatience rate if the first behavior set had a low enough threshold of
activation. Likewise, I want the robot team member that is superior at a given task to
"ýwin" the ability to perform that task by activating it prior to any of its teammates.
Yet again, this cannot be accomplished if the robots have different thresholds of
activation.

It is therefore important for the sake of efficiency for the value of 9 to be uniform
across robots and across the motivational behaviors of each robot. This uniformity
should be quite easy to achieve: it can be obtained simply by the human designer
broadcasting the desired value to all robots at the start of the mission, or by providing
the robots with a simple arbitration mechanism that allows the team on its own to
come to a consensus on what value of 0 to use. Of course, as we saw in chapter 3,
having uncalibrated O's across motivational behaviors or across robots is not a catas-

5 The model described in this section and in appendix B is a more recent version of that presented
in [Parker, 1993b].
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trophic problem - the robots will still be able to acconmpish their inissiont. although
less efficiently.

Sensory feedback

The use of sensory feedback in L-ALLIANCE is unchanged from its use ill AL-
LIANCE.

Inter-robot communication

The rate at which robots communicate their current actions to their teammates is of
central importance in ALLIANCE and L-ALLIANCE to the awarenfss robot team
members have of the actions of their teammates. This in turn affects the efficiency
of the team's selection of actions, since lack of awareness of the actions of teammates
can lead to replication of effort and decreased efficiency. Since this issue is addressed
extensively in chapter 5, I will not repeat. my conclusions here. Suffice it to say that
to ensure maximal efficiency, it is best to set the communication rates, pi, to be fairly
frequent relative to the time required to complete each task in the mission. Since
the task completion time is usually many orders of magnitude larger than the time
required to broadcast a message, it is likely that the communication system capacity
easily suffices to meet this requirement.

The second parameter dealing with inter-robot communication is ri. This parame-
ter is especially important for allowing a robot to know which other robots are present.
and to some extent functioning on the team. Although I want robots to adapt their
own actions according to the current and expected actions of their teammates, I do
not want robots to continue to be influenced by a robot that was on the team, but at
some point has ceased to function. Thus, robots must at all times know which other
robots are present and functioning on the team. This is implemented in ALLIANCE
as follows: at the beginning of the mission, team members are unaware of any other
robot on the team. The first message a robot receives from another robot, however.
is sufficient to alert the receiving robot to the presence of that team member, since all
robot messages are tagged with the unique identification of the sender. The robots
then monitor the elapsed time from the most recent broadcast message of any type
from each robot team member. If a robot does not hear from a particular teammate
for a period of time Ti, then it must assume that that teammate is no longer available
to perform tasks in the missior.

Clearly, the proper value of Ti is dependent upon each robot, team member's pi
settings. If team members have different values for these parameters, then they cannot
be sure how long to wait on messages from other robots. However, the difficulty should
be minor if the rT values are set conservatively - say, to several times one's own time
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delay between messages. Even so. if a robot ri erroneously assumes a team ineniber
rk is no longer functional, the receipt of just one message from that team member at
some point in the future is sufficient to reactivate r.'ks influence on r,'s activities.

To refer to the team members that a robot ri thinks are current ly present on the
team. I define the following set:

robots_pr•s nt(i. t) = {kf3j.(com,,,_,r'c(f1vd(i. k.j. t - ri. I) = 10 )

The robots-present(i, t) set consists simply of those robots ?'k from which ri has
received some type of communication message in the last ri time units.

Suppression from active behavior sets

The suppression from active behavior sets in L-ALLIANCE is implemented identically
to the method utilized in ALLIANCE.

Learned robot influence

When a robot is operating in the active learning phase as described in section 4.4.2,
it selects its next task from among those tasks that are not currently being attempted
by any other robot. Thus, a task hi(aij) that robot ri will consider selecting in the
active learning phase is determined by the following function:

{0 if ( E comm_-received(ix,j,0,t)) #0
learning- impatience i (t) = XErobots prestnt(it)

1 otherwise

This function says that a robot ri considers activating a task hi(aij) in the active
learning mode only if ri has not received a communication message from some robot
r, on the team indicating that r, is pursuing task hi(aij). On the other hand, when
a robot is in the adaptive learning phase as described in section 4.4.2, it selects its
actions based upon the knowledge learned about its own and other robot capabilities
by using control strategy IV as described in section 4.5.3.

An additional role of the learned robot influence parameters, however, is to over-
look thc previously demonstrated capabilities of team members if tasks remain to be
accomplished. This is implemented by causing the robot to be initially "blinded" to
category 1 tasks - i.e. those tasks that other robot team members should be able
to perform well - and thus not consider them for activation. However, if no tasks
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remain in the first category, the robot *;. idle and begins to become bored. Once robot
ri's boredom has crossed a threshold, it is no longer blinded to the tasks that other
robot team members should be able to perform, causing ri to select a task from the
second category.

The resulting group behavior, then, is for the robots which have exclusive capa-
bilities to perform certain tasks to select those tasks immediately. Additionally. for
those tasks with a task coverage greater than 1, the robot that is expected to perform
the task best across the available robots is more likely to select that task. As we saw
in section 4.5, this approach thus yields a very efficient execution of the mission.

In terms of the formal model, I refer to this learned influence by the following
definitions. First, I define a value p that gives the number of trials over which robot
maintains task performance averages and standard deviations. As stated earlier, the
value of it is fairly small; in my experiments, maintaining information over about 5
trials provided good results. I then define the function:

task-tintei(k,j,t) = The average time over the last. p trials of robot rk's
performance of task hi(aij) plus one standard deviation,
as measured by robot ri

In the case of robot failure, the time attributed to the failed robot is some penalty
factor (greater than 1) times the actual attempted time. As we shall see below (in the
section describing the robot impatience parameters), this penalty factor in the case of
task failure is important for allowing a robot to overcome its failure to achieve one task
and go on to perform some other task at which it can succeed. The important point
to note is that repeated failures cause the expected completion time of the failed
task to monotonically increase, leading to slower rates of impatience for the failed
task. If a robot continues to select a tasL at which it repeatedly fails, the updates
to the impatience parameters eventually cause the robot to become more impatient
to perform some other task at which it can succeed. This, therefore, prevents the
robot from getting stuck forever performing a task at which it cannot succeed while
it still has some task which it could successfully complete. Of course, the larger the
penalty factor, the less likely the robot will repeatedly select a task at which it cannot
succeed.

The tasks are then divided into the two categories of strategy IV according to the
following function:

1 if (tasktimnEi(i,j, t) = min task_timej(k,j, t))
kE robots -prese nt (i,t)

task -categoryij(t) = and (( comrnreceived( i,tj, - 7i, t)) = 0)
xE robots..presenI ( i,t)

2 otherwise
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This function says that task hi(aij) belongs to the first category in robot ri at
time t if robot ri's expected task completion time for task hi(aij) is the minimum of
the robot team members that ri knows about, and if ri has not received a message
from any other robot on the team, rx, in the last ri time units which indicates that
r, is currently pe-forming task hi(aij).

Next, I define the function that indicates the level of boredom of robot ri. Given
a boredom threshold, ooredo,;u-thnrsholdi, and a rate of boredom, boredornratfi, I
define the boredom function a:i follk ws:

0 for t = 0
boredomi( t) = (Ij activity-suppression ij( t)) otherwise

×( boredomi(t - 1) + bore-donrn-atei)

This function says that robot ri's level of boredom is 0 at time 0 and whenever
some behavior set aij is active on ri. Otherwise, the level of boredom increments
linearly over time according to the rate boredom -rate .

I now define the function that indicates which tasks a robot corfsi'ler, for activa-
tion:

1 0 if (boredomj(t) < boredom-thresholdi) and
learnedrobot.influenceij(t) = (task -categoryij(t) = 2)

1 otherwise

The function says that robot ri considers activating a task hi(aij) at time t only
if that task is in category 1, or if the robot is bored.

Robot impatience

The primary robot impatience parameter is Oij(k,t), whose value in L-ALLIANCE
varies during the mission based on the robot's experience. As discussed in sec-
tion 4.4.4, t'.. value of Oij(k, t) is set according to the selected impatience/acquiescence
update strategy. The results presented earlier in this chapter indicate that the most
efficient global action selections can be obtained by setting t',e value of Oij(k, t) as
follows:

* For mildly heterogeneous teams in which Condition 3 (Progress When Active)
does not hold, Oij(k,t) should be set to task_ti'mei(k,j,t) (i.e. the time ri
expects robot rk should need to complete task hi(aij); this is strategy 1II).

* Otherwise. Oij(k,t) should be set to task_timej(i,j,t) (i.e. ri's own expected
time required to complete task hi(aij); this is strategy IV).
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If robot teams do not know which of these two situations holds in a given mis-
sion, the earlier results indicate that strategy IV is the preferred approach. Once the
value for 0jj(kt) is determined, it. is used to update the slow and fast rates of im-
patience (_sloou, j(k. t) and 6 _fastij(t)) according to control strategy IV. Recall that
&.slou, j(k. t) is the rate at which robot ri becomes impatient with task hi(asj) not be-
coming complete in the presence of robot, rk performing that task. and that 6-fastj.(t)
is the rate at which ri becomes impatient with task hi(ai5) not becoming complete
either when no other robot is working on task hi(aij), or when another robot has
worked for too long on task hi(aij). The idea, is to set. these parameters to cause the
motivational behaviors to interact in such a way that each robot selects tasks from
the first task category (see again section 4.5.3) according to the longest task first, and
to select from the second task category according to the shortest task first. Because
of the definition of the two task categories, the 6_slowij(k, t) parameters only affect
tasks in the second category, which means that b-slo'wij( k, t) should grow faster than
bslowip(k, t) only if robot ri expects to perform task hi(aij) faster than it expects to
perform task hi(ai.). The bslou'oj (k, t) parameter is therefore updated according to
the following:

bstowi j(k, t) -O/Oij (k, 1)

This setting ensures that the time required for the behavior set's motivation to in-
crease from 0 until it exceeds the threshold of activation equals the time of ri's pa-
tience with rk. Since the motivation is reset to 0 when rk first begins execution of task
hi(aij), but never again, this ensures that ri does indeed give rk an opportunity to
perform task hi(aij). However, ri cannot be fooled by repeated unsuccessful attempts
by rk to perform task hi(aij); thus ri will eventually take over this task if rk does not
demonstrate its ability to accomplish it.

Now let us examine the Lfastij(t) parameters; these parameters can affect the
selection of tasks from either task category one or two, which means they must at
times cause tasks to be selected according to the shortest first, and at other times
according to the longest first. An additional detail concerning robot idle time between
task activations must now be addressed. Any 6fastij(t) parameter corresponding to
a task in the second category could be set the same as bslowij(k,t) for some k.
This would indeed cause the tasks to be selected in ascending order according to
the expected task completion time. However, we must note that during the time in
which the _fastij(t) parameters are below the threshold 0, the robot is idle. Thus,
setting a 6-fastij(t) parameter the same as its corresponding 6_slowij (k, t) parameter
would cause the robot to wait for a period of time 4ij(k, t) before activating task
hi(aij), which in turn meap'• that, the robot would remain idle about as long as it
spends performing tasks. This il clearly unacceptable for the sake of efficiency, so the
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6-fast 3j(t) parameter must be scaled in some way that reduces robot idle time while
maintaining the relative impatience rates across motivational behaviors.

One easy way of scaling the 6_fastij(t) parameters is to multiply them by some
constant greater than 1. However, while this approach does reduce the idle time and
maintain the relative ordering among the tasks. it still does not place an uipper bound
on how long a robot might remain idle during its mission. A better way of scaling
the idle times is to map them to some acceptable range based upon expected task
completion time. To do this, I define the notion of a minimum allowablf dday and
a maximum allowable delay, which give the range of times a robot can remain idle
while waiting on its next behavior set to be activated. The actual values for these
allowable delays should be set by the human designer according to the application.
The only restriction is that the minimum delay should be greater than 0. Then, the
ideal method of scaling the rates to within this range requires the motivational behav-
iors to ascertain the global minimum and maximum expected task completion times
across all tasks of the mission. The reason why the global minimum and maximum
times are ideal is because this allows the rates of impatience for a given task to re-
main calibrated across robots. However, unless ouier boundaries for these values are
provided by the human designer in advance, this requirement violates the distributed
nature of L-ALLIANCE across robots. Although it would be quite possible to provide
the robots with the ability to determine these global minimum and maximum task
completion times through the broadcast communication system, I will not violate
the distributed nature of L-ALLIANCE across robots. Instead, I approximate these
global minimum and maximum task completion times with the minimum and maxi-
mum task completion times known within a given robot. Although this, too, violates
the purely distributed nature of L-ALLIANCE within an individual robot, it can eas-
ily be accomplished through message passing between the motivational behaviors or
a shared memory location6 . With these new values, then, the proper settings of the
b-fastij(t) parameters are determined as follows:
Let:

rmin-delay = minimum allowed delay

max-delay = maximum allowed delay

high = maxtask_ti-mei(k,j,t)
k,j

51f this, too, is undesirable, then the motivational behaviors can be provided with the expected
minimum and maximum task completion times at the beginning of the mission, and then approx-
imate the proper scaling. Small changes in the definition of 6-fastij(t) would then be necessary to
ensure that the rates do not drop below zero.
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low = mintaskJincui(k,j,t)k,,i

ma.rdclay - iniidclays s c a le -f a c to lr = h g o thigh - low

Then: { inudtl +(0ask-tirn{iJ.t)-Lou,}×scahdctor if task.categoryij(t) 2 2
b-fastij(t) = o

maxrdday -(task.-tintes (ij, t)- loou) x scalefactor otherwise

Thus, in the case of category 2 tasks, the fast impatience rates grow more quickly
for the shorter tasks, whereas category 1 task impatience rates grow more quickly for
longer tasks. In either case, the maximum delay before task activation is max.delay.

Robot acquiescence

The two robot acquiescence parameters are V ijt - the time before ri yields task
hi(aij) to another robot - and AXj(t) - the time before robot ri gives up on itself to
try to find something more useful it can accomplish. As described in section 4.4.4, the
first of these parameters is updated according to the current impatience/acquiescence
parameter update strategy, as follows:

" For mildly heterogeneous teams in which Condition 3 (Progress When Active)
does not hold, V!,ij(t) should be set to task-timei(i,j, t) (i.e. the time ri expects
to need to complete task hi(aij); this is strategy III).

" Otherwise, p,ij(t) should be set to minkE robots present(it) task-timei(k, j, f) (i.e. the
minimum time ri expects any robot would need to perform task hi(aij); this is
strategy IV).

The value of the Aij(1) parameter should be based upon the time robot ri expects
it requires to perform task hi(aij). This parameter should be conservatively set.
however, so that mild underestimates of expected task time do not cause a robot to
give up prematurely. Values for \ij(t) set at two or three times the expected task
completion time seem to work well in practice.

Motivation calculation

All of these inputs can now be combined into a simple motivational behavior calcula-
tion. During the active learning phase, the motivation of robot ri to perform behavior
set aij at time t is calculated as follows:
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DURING ACTIVE LEARNING PHASE:

random.increment 0 x (a random number between 0 and 1)

m1j(O) = 0
in(t) = [mij(t - 1) + randonm-_ncrnfid]ni

.× sensoryjeedback1j(t)
"× activ'ity-sutppression ij ( t)

"× kearning-impatienceij (t)

The motivation to perform any given task thus increments at some random rate
until it crosses the threshold, unless the task becomes complete (sensoryjfeedback),
some other behavior set activates first (activity.suppression), or some other robot has
taken on that task (learning.Jimpatience).

When the robots are working on a "live" mission. their motivations to perform
their tasks increment according to the robots' learned information. The motivations
are thus calculated as follows:

DURING ADAPTIVE PHASE:

m j (0) = 0
mij(t) = [mij(t - 1) + impatienceij(t)]

"x sensory-feedbackii(I)

"x activity-suppressionij (t)
"x impatience-reset ij (t)

"x acquiescence ij (t)

"x learned-robot-influence ij (t)

Robot ri's motivation to perform any given task during the adaptive phase thus
increments at the proper impatience rate (based upon the activities of other robots)
until it crosses the threshold, unless the task becomes complete (sensory-feedback),
some other behavior set activates first (activity-suppression), some other robot has
taken over that task (impatience-reset), the robot decides to acquiesce the task (ac-
quiescence), or some other robot is present that should be able to accomplish the task
better than ri (learned.robot-influence).

In either the active or the adaptive learning phases, when behavior set aij is op-
erational in robot ri, the corresponding motivational behavior broadcasts ri's current
activity to its teammates at a rate of pi.
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4.7 Summary and Contributions

This chapter has presented the L-ALLIANCE dynamic parameter update mechanism
which allows robot teams to improve their efficiency from trial to trial on missions
composed of independent subtasks. After showing that this efficiency problem is NP-
hard, I investigated the performance of a number of heuristic control strategies as
a function of the number of robots on the team, the size of the mission, the degree
of task coverage, the degree of robot heterogeneity when task abilities are shared.
and the degree to which the Progress When Working condition holds true. From the
results, I derived a control strategy - strategy IV - that, performs well for almost
any combination of the above factors. I compared the results of this strategy to the
optimal results for small problems and found that control strategy IV performs within
20% of the optimal solution for these small problems. Determining L-ALLIANCE's
expected performance for much larger problems. however, is challenging, and is thus
a primary topic for future study.

I now again review my initial design requirements from chapter 1 and note the
advantages L-ALLIANCE offers over ALLIANCE.

4.7.1 Meeting Design Requirements

The primary advances which L-ALLIANCE makes over ALLIANCE are in the areas
of adaptivity and coherence. I briefly review these advances here.

Flexibility and Adaptivity

A major advantage of the L-ALLIANCE control mechanism is its ability to allow
robots to adapt over a number of trials to the performance of team members. As
robot abilities in performing their tasks change over time due to learning, mechanical
drift, or mechanical repairs, team members continually adapt their parameters to
respond to these changes. Thus, since learning is always activated - even when
performing a "live" mission - each robot is able to evolve its response over time
to the presence of other team members and their actions. This enhances the ability
of the human designer to custom-design teams of robots for given type of mission
without the need to perform a great deal of pre-programming.

Coherence

As mentioned in chapter 1, one very common measure of system coherence is the
efficiency with which the system accomplishes its mission. As we saw in chapter 3.
ALLIANCE addresses one aspect of efficiency by providing mechanisms for robots to
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minimize replication of tasks. However. ALLIAN('E does not provide mechanismis
ensuring that the team accomplishes its mission with iniurual time or energy expen-
diture. As we saw in chapter 3. ALLIANCE is guaranteed to allow the robot teant
to accomplish its mission when the Progress \W:hen \Working condition is true (bar-
ring robot failures). However, we could not be confident that the robot team under
ALLIANCE would accomplish the mission efficiently. In fact. if the impatience and
acquiescence parameters are set particularly badly. the team members could thrash
between tasks or select. tasks they l)erform very inefficiently. As we have seen in this
chapter. L-ALLIANCE corrects this problem by providing a control mechanism that
minimizes thrashing between tasks.

Another, more difficult, efficiency consideration in heterogeneous robot teams is
the ability for each robot to select its own actions in light, of the capabilities of its
teammates. Since heterogeneous teams are often composed of robots that can per-
form the same task with quite different performance characteristics, it. is important
that robots be able to select their actions so as to minimize the total time or energy
required for the team to complete its mission. L-ALLIANCE accomplishes this ef-
ficiency improvement by incorporating a distributed control mechanism that allows
a team of robots to select tasks efficiently based upon their relative abilities. This
control mechanism has been shown to result in very close to optimal results for small
problems. Additionally, even for those problems for which the optimal solution could
not be computed, the final L-ALLIANCE control mechanism has been shown to result
in dramatic improvements over more naive approaches.

4.7.2 Contributions

The primary contribution described in this chapter is the L-ALLIANCE extension
to ALLIANCE that preserves the fault tolerant features of ALLIANCE while in-
corporating a dynamic parameter update mechanism that uses learned knowledge
to improve robot team performance. This extension to ALLIANCE results in the
following desirable characteristics:

"* Improves efficiency for cooperative teams applied to missions composed of in-
dependent tasks.

"* Eliminates the need for human adjustments of parameters.

"* Allows human designer to custom-design robot teams for specific missions.

* Requires no advance knowledge of the capabilities of team members.

* Allows robot team members to adapt their performance over time to changes
in the environment or in the team member capabilities.
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Robot Awareness and Action
Recognition

The ALLIANCE and L-ALLIANCE architectures described in chapters 3 and 4 ad-
dress the important question of how to allow a distributed team of robots to accom-
plish its mission while maintaining robustness. reliability, flexibility, and coherence.
It is important to note, however, that these architectures rely on the ability of robot
team members to determine the current actions of their teammates as well as the
effect of those actions. Due to the difficulty of achieving an automated solution to
passive action interpretation, the ALLIANCE and L-ALLIANCE architectures utilize
a broadcast communication mechanism as a substitute. As described in chapter 3, this
communication mechanism requires each robot team member to periodically broad-
cast its current actions. Other team members hear these broadcasts and alter their
own actions accordingly. This communication mechanism, therefore, allows a detour
around the important, yet difficult, topic of passive action recognition without the
assumption of an unrealistic "black box" that provides "magical" capabilities to the
robot team members.

However, one may rightly question whether this substitution nullifies my claims for
the robustness of ALLIANCE and L-ALLIANCE, asking whether the failure of one
system component - the communication mechanism - could cause the failure of the
entire robot team. Since communication is used in ALLIANCE and L-ALLIANCE
to substitute for action recognition, the failure of the communication system implies
that robot team members are no longer aware of the actions of their teammates. An
accurate description of our concern here, then, is the issue of robot auware-1ss, rather
than the broader issue of communication failure. This chapter explores this question
of robot awareness and action recognition, particularly as it applies to the ALLIANCE
and L-ALLIANCE architectures. I first review the related work in the area of action
recognition to identify the current state of the art, and then present the results of

127



128 ('HA PTER 5. ROBOT All'.. RENESS A ND A('TIOC X R ECC(O(;NITION

a detailed study of this issue using physical robots performing the hazardous waste
cleanup mission.

5.1 Action and Goal Recognition

Action rmcognition is the problem of observing the behavior of an agent and inter-
preting that behavior as a discrete action or actions. Related to this notion is the
more well-known artificial intelligence problem of goal or plan recognition. which is
concerned with explaining the behavior of an agent'. The two notions are distinct,
however, because research oii the former topic focuses on the issue of what an agent is
doing, whereas the latter topic concentrates on why an agent is doing what it is doing.
These issues are of interest for cooperative mobile robotics because they can provide
robots with the ability to respond more appropriately to the actions and intentions of
their teammates. Without at least a rudimentary ability to perform action and goal
recognition, robot teams will have difficulty achieving coherence in their task selec-
tion, as discussed in the following section. In this section. I explore the issues of goal
recognition and action recognition, reviewing the related research in these areas and
making comparisons to the approach employed in ALLIANCE and L-ALLIANCE.

5.1.1 Goal Recognition

A significant amount of research in artificial intelligence has addressed the topic of
goal recognition. An application domain particularly well-studied is that of natural
language discourse understanding. This research deals primarily with the role of plans
and intentions in understanding dialogues. A broad selection of papers in this area
can be found in [Cohen et at., 1990b]; additional work in this area is described in
[Carberry, 1990, Charniak and Goldman, 1989, Konolige and Pollack, 1989, Mavfield,
19891. A second main body of work in goal recognition is the area of intelligent user
interfaces; examples of this area of research can be found in [Goodman and Litman,
1990, Raskutti and Zukerman, 1991).

Although the specific approaches to goal recognition vary greatly, nearly all ap-
proaches involve the use of a model of agent behavior for use in interpreting that

'Since the meanings of goal recognition and plan recognition are often blurred in Al and Dis-
tributed Al research, I henceforth use the term goal recognition to encompass both goal and plan
recognition as used by the traditional Al and DAI literature. I do this more for philosophical reasons
than for conciseness, because the term plan recognition implies that the observed agent actually has
a plan, in the traditional Al sense (see chapter 8 for a description of what is meant by "traditional
Al"). I resist making this assumption as applied to mobile robots for reasons that should be obvious
from this report.
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agent's actions. Bond and Gasser in [Bond and Gasser. 1988] cite the reasons for
modeling agents as follows:

"* Models are useful for predicting the requirements and effects of events not di-
rectly sensible (e.g. because they will occur in the future).

"* Models can reduce communications requirements.

"* Models can be useful for evaluating the credibility, usefulness, reliability, or
timeliness of data.

"* Models may improve efficiency by focusing activity or by directing search.

It is interesting to note that most of the agent models proposed in this body of
research are quite elaborate, and stress the manipulation of declarative (as opposed
to procedural) knowledge of agent actions. The usefulness of these elaborate models
for goal recognition within physical robots that must operate in real-time, however, is
uncertain. As described in more detail in chapter 8, this type of elaborate modeling
used by traditional artificial intelligence approaches for general robot. control has not
performed well when applied to physical mobile robots. In fact, the most successful
mobile robots to date have been built according to lessons learned from ethology, in
which a few relatively simple rules of action interact to create the emergent behavior
of the robot [Maes, 1990]. Thus, we might expect that the same principle which
holds for general robot control also holds for goal recognition in physical robots.
Studies involving East African vervet monkeys [Cheney and Seyfarth, 1990] have
indeed shown that these animals view the world as things that act, not as things that
think and feel. In other words, these monkeys can well understand behaviors of other
animals in their society without having a concept of the knowledge or beliefs that
may have caused those behaviors. Even without the ability to model the beliefs of
other monkeys, however, these animals are able to cooperate to an amazing extent.
Thus, we have an existence proof that complex models of intention are unnecessary
for cooperation at the level exhibited by most social animals. Indeed, I have shown in
this report that for the application domains I have studied, elaborate understanding
of robot intentions is not necessary to achieve cooperative control.

Agent modeling issues aside, as noted in [Huber and Durfee, 19931, the existing
goal recognition research is of limited use in multi-robot cooperation because the
research almost invariably assumes that error-free symbolic descriptions of the current
action (and possibly previous actions) taken by an agent and the current state of the
world are always available. Since the systems do not deal with the difficult problem
of obtaining the symbolic descriptions in the first place, nor with the problem of
uncertainty in the observations, they have little relevance to physical robot domains.
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One exception to this is the preliminary work describled in [Huber and Durfee. 1.99:3].
which explicitly addresses this issue for mobile robot cooperation. In this p)aper.
Huber and Durfee describe experiments in which one robot tries to infer the goal
destination of another robot by analyzing its movements and taking into account
uncertainties in the observations.

5.1.2 Action Recognition

Recognizing the actions of teammates can be performed by a robot in one of two
ways:

* Through explicit communication

* Through interpretation of behavior observations

Clearly, the easiest method is the first, which involves having each robot explicitly
communicate its current action to teammates according to some protocol or pre-
determined arrangement. As we have seen, this is the method utilized in ALLIANCE
and L-ALLIANCE, whereby robots broadcast their current actions to teammates at
some specified rate.

However, this simple method will obviously not work for applications in which the
communication medium is not available (e.g. due to a noisy environment or faulty
equipment), is costly (e.g. in terms of time or robot safety, in military applications),
or is of limited bandwidth. In such applications, the robots must rely on other sensors
- primarily visual - to observe and interpret the actions of team members.

Unfortunately, research in action recognition is much more limited than that ad-
dressing goal recognition, due to the difficulty of passive action interpretation. The
current state of the art in this field provides robots with the ability to interpret
simple teleoperated assembly tasks using non-visual sensors [Takahashi et al., 1993,
Yang et al., 19931 and the ability to visually recognize human actions in simple blocks-
world construction tasks [Kuniyoshi and Inoue, 1993, Ikeuchi et al., 1993]. All four
of the projects cited involve a robot first observing the human performance of a task
and then interpreting and converting that task into either a symbolic or a kinematic
representation which can then be reproduced by the robot. These research projects
are notable for advancing the the field of passive action interpretation. However, they
also demonstrate the significant difficulty of the action recognition problem, since they
currently only work for very simple problems.
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5.2 The Importance of Robot Awareness

As stated at the beginning of chapter 3, ALLIANCE assumes that with some prob-
ability greater than 0. each robot ri on the team can detect the actions of other
team members for which ri has redundant capabilities. However, I also stated that
I recognize that passive action interpretation is quite difficult and that explicit com-
munications mechanisms substituting for this ability are not infallible. Thus. it is
important to investigate the impact on the team's performance of incomplete, or
even absent. knowledge about. the actions of other team members and their effects
on the environment. I use the term auwarenenss to refer to this knowledge a robot has
about the current actions of other robot team members.

To investigate this issue. I used four experimental setups of the hazardous waste
cleanup mission that varied the number of robots on the team and the level of aware-
ness the robots had of the actions of their teammates. The four versions of this
experiment are:

I. Two-robot team, full awareness of teammates' actions.

II. Three-robot team, full awareness of teammates' actions.

III. Two-robot team, no awareness of teammates' actions.

IV. Three-robot team, no awareness of teammates' actions.

To achieve versions III and IV - those involving no awareness - the broadcast
communications of each robot were turned off. Since these broadcasts are the sole
mechanism in these experiments allowing robots to detect the actions of other robots
whose effects could not otherwise be sensed through the world, the effect was to cause
each robot to "think" it was working alone.

The outcomes of these experiments were evaluated based on their impact on the
amount of time and energy required to complete the mission. To measure the energy
usage, I made the approximation that a robot that is turned on but is not moving
either its wheels or its gripper uses zero energy, whereas a robot that. is using any of its
four motors (i.e. right wheel, left wheel, grip, or lift) uses a unit quantity of energy per
unit time. This approximation is not always correct with these robots, because a robot
clearly uses more energy the more motors it activates at once. But since the energy
requirements of the R-2 electronics when the R-2 is idle are indeed much less than
the R-2's total energy requirements while it is moving, this approximation enables a
simplified analysis while still providing a valid comparison of the four experimental
setups.

Typical runs of experimental versions I and II were described in section 3.8, with
their corresponding action selection traces shown in figures 3-9 and 3-10. Analogous
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traces of the actions selected by each robot for typical runs of experimental versions III
and IV are shown in figures 5-1 and 5-2. Note in these traces that the robots replicate
the actions of finding the initial and final spill locations and of reporting the progress.
In fact, the replication of effort is the primary effect appearing in ALLIANCE that
results from reduced awareness of the actions of other team members. The extent of
this effect is the subject of investigation of this section.

It is important to note, however, that as we study the effect of the lack of aware-
ness in ALLIANCE. the robot team is still able to complete its mission using the
ALLIANCE architecture even with no knowledge of the actions of other robots. Cer-
tainly, their performance is less efficient and coherent than when awareness is possible,
but at least they do get the job done. This is an important point in the usefulness
of ALLIANCE, in that the robots are able to limp along to accomplish their part
of the mission even when they "think" they are working alone. This gives the team
increased robustness in the presence of communication failures.

For each of these four experimental setups, I ran 10 missions to completion on the
physical robots and collected data. on the actions selected by each robot, at each point
in time and the length of time they required to complete those actions. I considered
the mission to be complete when 80% of the spill was moved to the goal location,
which in this case meant when 8 of the 10 spill objects were at the goal location. All
of the mission runs were measured up to, but not beyond the 80% complete stage
for uniformity of measurements. One caveat is that if the robot moving the 8th spill
object decided that it was time to report the progress, the mission was not considered
complete until that robot had concluded its progress report.

5.2.1 Results and Discussion

As it turns out, the analysis of the performance of this mission by the four experimen-
tal robot teams is more complex than may be obvious at first glance. Two phenomena
unrelated to cooperative robot issues arose during the experiments that, must be fac-
tored out of the experimental evaluation; both of these phenomena have to do with
events occurring while robots are performing the move-spill task, which is described
in section 3.8.

First, it frequently happens that when picking up a spill object for transport to
the final spill location, a robot actually "scoops up" additional spill objects in the
cavity under its gripper and thus transports more than one spill object at a time2.
An example of this phenomenon is shown in figure 3-15. In fact, on average 1.6
spill objects are moved per transport to the final spill location, which means that an

2 This is analogous to a real-life hazardous waste cleanup robot which may, at times, be able to
pick up larger portions of the spill for transport.
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Figure 5-1: Robot actions selected during a typical experimental version III with two
robots (RED and GREEN) and no awareness.
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Figure 5-2: Robot actions selected during a typical experimental version IV with
three robots (RED, GREEN, and BLUE) and no awareness.
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average of 5 spill object transports are required to move 80X, of the objects to the
goal location. On one remarkable occasion, a robot actually managed to move 6 spill
objects to the goal at once - two objects in its gripper and four objects in its front
cavity. Of course, this is pure luck and relies on spill objects lying directly in the
robot's path as it moves toward the goal when grasping an object and on the robot's
not having to back up and turn away from an obstacle on its way to the goal. (Backing
up and turning causes the robot to lose the spill objects in its front cavity.) Clearly.
when a robot is able to move several objects in one trip, fewer trips are needed in total
to accomplish the mission, which in turn means that, the time and energy required
to complete the mission varies accordingly. Additionally, accomplishing the move of
the spill objects more quickly impacts the number of progress reports needed during
the mission, as the total number of reports made is a function of the task completion
time.

A second phenomenon observed in these experiments is that the time required
for any individual robot to locate a spill object and move it to the goal location
varies enormously. This is due to a combination of sensor and effector noise, and to
the random search pattern the robots use to sweep the initial spill area. Figure 5-
3 shows the average time (which, in this case, is the same as the average energy)
required for each of the robots BLUE, GREEN, and RED to perform one instance
of the three high-level tasks of this mission - finding the locations, making one spill
object transport trip, and making one progress report - while on either a two-robot
or a three-robot team. As this figure shows, the deviation in the time required to
accomplish one transport of a spill object is quite large. Since the move-spill task is
effectively shared by the robots in all four of these experimental setups, any effects
due to robot awareness, or lack thereof, can be lost in the noise if the move-spill task
comprises a large portion of the total mission time.

Because of these phenomena, the data collected for each of the four versions of
the robot experiment must be normalized. To do this, I define functions that give us
the average time and energy used by each experimental version.

Let:

n = number of robots on the team

energy(task) = the average energy required by a robot team

member to perform one instance of task

time(task) = the average time required by a robot team

member to perform one instance of task

num-moves = the average number of spill object moves

required to complete the mission
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Figure 5-3: Average time (or energy) used by each of the 3 robots (BLUE, GREEN,
and RED) to perform one instance of the tasks in the hazardous waste cleanup mission
(report-progress, rnove-pucks, and find-locations), either when working on a two-robot
team or on a three-robot team. No data was collected for BLUE on a 2-robot team,
since it was not used in the 2-robot experiments. Error bars indicate one standard
deviation in the measured times (energies).
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= 5 (from the discussion above)

num_RPs_per_movfe(v rsion) = the average number of progress reports
performed per spill object move for

experimental version version

Then the average energy required to perform a mission for a given experimental

version is:

For experimental versions I and II:

mission energy( version) =
energy(find-locations)

+ num-moves x (energy(move-spill) + numRPs-per-mote(version)
x energy(report-progress)) (5.1)

For experimental versions III and IV:

mission.energy(version) =
n x energy(find-locations)

+ num-moves x (energy(move-spill) + numRPs-per-move(version)
x energy(report-progress)) (5.2)

The average time required to perform a mission is then define,' as:

mission time(version) =
time(find-locations) +

[num-moves x (time (move-spill) + numRPs.per-move(version)
x time(report-progress))]/n (5.3)

The value of numRPs-per.move(version) for each of the four experimental setups
was obtained from the experimental data by averaging the ratio of the number of
progress reports performed in a mission to the number of puck moves required by that
mission. These values are given in figure 5-4. The values of energy(find-locations),
energy(move-spill), energy(report-progress), time(find-locations), time(move-spill),
and time(report-progress) were derived from the experimental data shown in figure 5-
3 by averaging the time (or energy) values for all the robots for each of the three tasks.
Since the time (or energy) required for each robot to perform each task did not vary
significantly whether the robot was on a two-robot team or on a three-robot team,
averaging across the team size does not skew the data. Additionally, since going from
a two-robot team to a three-robot team did not increase interference, we can obtain
the time requirements of a given experimental version by dividing by n the total accu-
mulated time required for n robots to perform the move-spill and report-progress tasks
for that version. Of course, this approximation cannot be expected to hold for any
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Figure 5-4: Average number of progress reports required per move of a spill object
for each of the four experimental versions.

arbitrarily large robot team size, since at some point interference E nong the robots
becomes a significant factor. One disadvantage of this averaging, however, is that it
eliminates the differences in robot performance due to heterogeneity, primarily in the
find-locations task. Again, I accept these averages for now to allow other interesting
generalizations to be made.

Studying the group behavior of these four experimental setups brings to light a
key issue in the analysis of the effect of awareness. Since the primary result of the
lack of awareness is the replication of effort on those tasks for which robots have
overlapping capabilities, the effect of this lack of knowledge varies depending upon
the extent of overlap in robot capabilities and on the extent to which the effect of
the actions of other robots can be sensed "through the world".' If robots have high
overlap in their capabilities, along with a great difficulty in sensing the effects of the
actions of other robots through the world, then the effect of the lack of awareness
is clearly much greater than if the robots have no overlapping capabilities and do

3This ability to sense the effects of actions through the world can also be viewed in terms of the
Progress When Working condition introduced in chapter 3. If action effects can be sensed, then the
Progress When Working condition is true: otherwise, the Progress When Working condition does
not hold.
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not, rely on the ability to sense the effects of other robots* actions through the world
to select their own actions. On the other hand, if the total execution cost of the
redundant actions is trivial compared to other actions that are not replicated. then
the lack of awareness does not have an appreciable effect. The proper way to analyze
the effect of awareness, then, is to compute its impact as a function of (1) the degree
of redundancy in the capabilities of the robot team, (2) the ability of the robots
to sense the effects of actions through the world, and (3) the cost of the replicated
actions, relative to the cost of the entire mission.

Let us therefore examine this issue in more detail. In the cleanup mission intro-
duced earlier, each instance of the move-spill task is an action whose effects can be
sensed through the world; robots do not try to move spill objects that are no longer
at the initial spill site. On the other hand, the find-locations task and each instance
of the report-progress task are all information gathering or information broadcast-
ing types of actions whose effects cannot be sensed through the world by this robot
team. Thus, we find that the lack of awareness of the actions of other robots causes a
replication of the find-locations task and the report-progress task, but does not cause
a replication of effort in the move-spill task. Comparing the traces of figures 3-9
and 3-10 with figures 5-1 and 5-2, respectively, illustrates this replication.

To analyze how serious the replication of effort due to limited awareness can be. I
define relative cost measures, genergy(taskk) and gtime(taskk), for a specific task taskk
as follows:

energy(taskk)ge,,er•(taskk) =

£jEall tasks cnergy(taskj)

where energy(task) is the energy required to perform one instance of the task task.

grim ( taskk ) = ticask
g jEall tasks time(taskj)

where time(task) is the time required to perform one instance of the task task.
I use these relative cost measures in the next two subsections to quantify the cost

of a replicated task. I can then vary the relative costs of these tasks to determine
their impact on the teams' performance.

The Effect of Awareness on Energy Usage

Figures 5-5 and 5-6 plot the effect of varying the relative costs of the two replicated
tasks, find-locations and report-progress, on the average energy required to perform
the mission for each of the four experimental setups, using the energy function. mis-
sion-energy(version), defined in equations 5.1 and 5.2. In the case of find-locationis,
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Figure 5-5: This graph shows the percentage reduction in average energy required as a
function of the relative find-locations cost. Here, the worst energy performance is the
baseline case with three robots and no awareness. The percent reduction in average
energy required to complete the mission from this baseline case for the remaining
three experimental versions is shown.

the worst version is the three-robot team with no awareness of the actions of the
other robots. The two-robot team with no awareness performs from 1W% to 31'X bet-
ter than the three-robot/no-a~wareness version (depending upon the relative cost, of
find-locations), while both the two-robot team and the three-robot. team with full
awareness performed from 2%, to 62%. better than the worst case.

In the case of report-progress, the worst versions were bot~h the two- and three-
robot teams with no awareness. Performing from 2%X to 29%X better was the two-robot.
team with full awareness, while the. three-robot team with awareness p~erformed from
3% to 51% better (again, depending upon the relative cost of report-pirogi'ess).

As expected, the team performance improves with awareness, regardless of the
task coverage afforded by the robot team - that is, regardless of the redundancy in
robot capabilities for each task - because replication of actions is prevented. W~e
also observe that for any level of team redundancy, the degree of improvement with
awareness increases as the relative cost of the redundant action increases. This, too.
is expected, since the energy saved with awareness is a direct function of the energy
required to perform the redundant action.

Two additional points are interesting to note:
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Figure 5-6: Of the 4 experimental versions for the hazardous waste cleanup mission,
the ones requiring the most average energy to complete the mission are the situations
involving no awareness of the actions of the other robots; both of these baseline cases
require the same average energy to complete the mission. The percentage reduction
in average energy required to complete the mission from these baseline cases is shown
as a function of the relative energy cost of the rcport-progrfss task.
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"* In the case of the find-locations, task. the energy performanice of the two-rohot
team without awareness (version 1II) was better than the three-robot teami
without awareness (version IV), whereas for the rfporl-progrs.-. task, the energy

performances of these two teams were identical. In other words, the energy
required to perform the find-locations task without awareness is multiplied by a
factor of n (the number of robots on the team), whereas the energy required to

perform the rfport-progrcss task without awareness is proportional only to the
number of spill object, moves of the mission.

"*In the case of the -rport-progrcss task, the energy performance of the three-
robot team with awareness (version Ii) was better than the two-robot team
with awareness (version 1), whereas in the find-locations task. the energy per-
formances of these two teams were identical. In other words, the energy re-
quirement of the find-locations task with awareness is fixed, whereas the energy
requirement of the report-progress task with awareness is proportional to the
numnber of spill objects moves divided by n (the number of robots on the team).

The first situation occurs because of differences in the extent to which the effect

of the actions of other robots can be sensed through the world. In this situation.
both teams lack awareness of the actions of other robots. The tasks that they might
replicate due to this lack of awareness are the find-locations task and several instances
of the report-progress task. Although neither of these task effects can be sensed
through the world by this team, the report-progress task is closely tied to the mnove-
spill task which is detectable through the world. Since the only time a robot tries
to initiate the report-progress task is after it has completed the transport of a spill
object to the goal, and since there are a fixed number of spill objects to be moved,
the question of whether to report the progress only arises a fixed number of times
for the team as a whole. Also, since the time required for one robot to find and
move a spill object (see figure 5-3) is approximately the same as the time allowed
between progress reports, robots in both versions III and IV are motivated to report
their progress almost every time that they deliver a spill object 4 . Thus, regardless of
whether the team consists of two or of three robots without awareness, the report-
progress behavior set is activated a fixed number of times, which means that the
energy requirements remain the same.

On the other hand, the find-locations task. whose effects cannot be sensed through
the world, is replicated by each robot on the team having the ability to perform that.
task, which means that as redundancy across robots increases, so does the energy
usage. The lesson from this first situation, then, is that in the absence of robot

4For experimental versions III and IV, the actual percentage of progress reports per move of a
spill object is about 86%, (see figure 5-4).
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awareness, redundancy across robots is detrimental for those redundant robot tasks
whose effects cannot be sensed through the world.

The second situation observed from figures .5-5 and 5-6 arises due to differences
in the required number of instances of tasks and how well those instances can be
distributed across the robot team. In this situation, both robot teams in question
(versions I and II) have full awareness of the actions of other robots. The differences
lie in the number of instances required by the hazardous waste cleanup mission of the
find-locations task versus the riport-progrtss task and how well they can be distributed
across robots. While only a single instance of the find-locations task is required, up to
8 instances of the rcport-progrfss task are necessary to complete the mission. Although
each instance of these tasks can be distributed to any robot team member with the
required capabilities, no single instance can be broken down into parts to be shared
by more than one robot. Thus, in the case of the one required instance of the find-
locations task, once one of the robots has selected that action, the other robots have
to just wait patiently for the first robot to finish that action (of course, another robot
may take over the task due to failure by the first robot, but that is another issue). In
this case, an increased degree of redundancy across the team for this action does not
provide any advantage, and so the performance of the two-robot team is not different
from that of the three-robot team when both have awareness.

The benefit provided by the three-robot team over the two-robot team (both with
full awareness) in the case of the report-progress task is obtained via a reduction in the
required number of instances of the task. Since the three-robot team can complete
the fixed amount of spill-moving required by the mission faster than the two-robot
team, the time required to complete the mission is shortened. This is turn leads to
a reduction in the number of progress reports required by the mission, which leads
to less work for each robot to obtain the proper number of reports. Thus, the lesson
learned here is that increased redundancy of robot capabilities in the presence of full
robot awareness helps when the mission requires several instances of tasks that can
be distributed across the robot team; it does not help, however, for single instances
of tasks that cannot be shared.

The Effect of Awareness on Time Requirements

Figures 5-7 and 5-8 show the effect of varying the relative costs of the find-
locations and report-progress tasks on the average time required to complete the
mission for each experimental version. The function plotted is the time function
mission time(version) defined in equation 5.3, while varying the find-locations or
report-progress costs, respectively. For both of these tasks, the worst time performance
occurred with version III - two robots without awareness. For the find-locations task,
the two-robot team with awareness performed from 9X down to I % better than the
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Figure 5-7: Of the 4 experimental versions for the hazardous waste cleanup mission,
the one requiring the most average time to complete the mission is the situation
involving two robots no awareness of their teammates' actions. The percentage re-
duction in average time required to complete the mission from this baseline case is
shown as a function of the relative time cost of the find-locations task.

baseline case, the three-robot team without awareness performed from 33% down to
4% better, and the three-robot team with awareness performed from 42% down to
5% better.

For the report-progress task, the two-robot team with awareness performed from
2% to 31% better, the three-robot team without awareness performed from 25% to
33% better, and the three-robot team with full awareness performed from 27% to
68% better.

As we saw with the energy requirements, the presence of awareness on the robot
team improves the time performance of this mission regardless of the relative cost
of the redundant tasks or the level of redundancy on the team. However, the time
curves do have a noticeably different character than the energy curves, and are worth
understanding. A couple of observations can be made:

"* Three-robot teams always give a better time performance than two-robot teams
for this mission, regardless of the presence or absence of awareness.

"* As the relative cost of the find-locations task increases, the benefits of awareness
and team redundancy decrease.
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Figure 5-8: Of the 4 experimental versions for the hazardous waste cleanup mission,
the one requiring the most average time to complete the mission is the situation
involving two robots no awareness of their teammates' actions. The percentage re-
duction in average time required to complete the mission from this baseline case is
shown as a function of the relative time cost of the report-progress task.
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The first observation is easily understood for the three-robot team with aware-
ness, since it is quite sensible that dividing up a given amount ef work across more
robots without replicating any\ tasks would result in the mission being completed more
quickly than for a two-robot team either with or without awareness. However, why
would a three-robot team withoid awareness perform more quickly than a two-robot
team with awareness? The answer lies in the tradeoff between the beneficial effects of
redundancy for tasks whose effects can be sensed through the world and the adverse
effects of redundancy for tasks whose effects cannot be sensed through the world.
When the cost of the tasks replicated due to lack of awareness is relatively low, the
redundancy in task coverage for those actions whose effects can be sensed through
the world is the dominating factor, and thus a noticeable improvement occurs. In
this specific example, then, we see that when the report-progrEss relative cost is low,
the three-robot team, even without awareness, provides a decided advantage because
it moves the spill more quickly without incurring much of a penalty for repetitive
progress reports. As the cost of report-progrmss increases, however, this advantage
dwindles. It is quite interesting to note, however, that although we observe in fig-
ure 5-8 the near convergence of the performaices of the three-robot team without
awareness and the two-robot team with awareness, a two-robot team with aware-
ness can actually never perform the mission more quickly than a team with a larger
report-progress and move-spill coverage, even when the larger team has no awareness
(that is, until we get into interference effects in larger teams). The reason is that the
progress report rate per spill object move for each team member will never be greater
than about .86 (see figure 5-4). The amount of report-progress time required per spill
object move is thus .58/2 for the two-robot team with awareness, and .86/n for any
team without awareness. Since .86/n < .58/2 for all n > 2, the two-robot team
with awareness can never require less total time to perform the progress reports. In
addition, since larger teams move the spill objects by a time reduction factor of 1/1n
as opposed to 1/2 for a two-robot team, the two-robot team can never accomplish the
mission more quickly. The lesson learned here is that although awareness is helpful
for a fixed-sized robot team, a larger team without awareness may actually be able
to perform the mission more quickly if a significant proportion of the mission consists
of tasks whose effects can be sensed through the world.

The second observation - that as the relative cost. of the find-locations task
increases, the benefits of awareness and team redundancy decrease - is due to a

matter of proportions. In the case of the find-locations task, lack of awareness causes
no time penalty - it simply leads all the robots to perform the find-locations task
once at the beginning of the mission. Thus, when the find-locations cost is low, a
significant proportional benefit in preventing the repetitive execution of the tasks
move-spill and rmport-progress can be drawn from awareness and team redundancy.
On the other hand, if the fixed, non-shareable startup cost of the mission is large
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compared to those portions of the mission that can be share(l across the team. then it
makes little time difference, proportionally, whether the team has awareness or task
redundancy. The lesson learned here is that awareness and task redundancy can help
with the time requirements of the mission only if the mission includes a fair percentage
of shareable tasks, especially those whose effects cannot otherwise be sensed through
the world.

5.3 Summary of Awareness Findings

In this chapter. I have examined the impact of the loss of communication in AL-
LIANCE on the performance of two-robot and three-robot. teams performing the
hazardous waste cleanup mission. This loss of the broadcast, communication capa-
bility leads to the inability of robots to be aware of the actions of their teammates.
which in turn leads robots to select their actions based purely on feedbact" from the
world through their remaining sensors and on their own internal motivati,.,,6 and pri-
orities. Since robots cannot always detect the effects of the actions of their teammates
through the world, the lack of awareness in ALLIANCE can lead to the redundant
execution of certain tasks required by the mission. I studied the extent, of this effect
on mission performance as functions of (1) the degree of redundancy in robot capa-
bilities, (2) the ability of the robots to detect the actions of other robots through the
world, and (3) the cost of the redundant tasks.

The findings can be summarized as follows:

"* For robot actions whose effects can be fully sensed through the world, the lack
of awareness causes no change in the time or energy required to complete the
mission, for a given level of robot redundancy.

" For robot actions whose effects cannot be sensed through the world, the lack of
awareness causes an increase in the energy requirements of the mission. This
increased energy requirement worsens as the level of robot redundancy increases
and as the cost of the redundant actions increases.

" For robot actions whose effects cannot be fully sensed through the world, the
lack of awareness causes an increase in the time requirements of the mission,
unless the redundant actions are taken when the robot(s) would otherwise have
been idle.

e For a given mission to be completed by a robot team with full awareness, in-
creasing the level of robot redundancy reduces the time requirements for those
tasks which can be shared by the team, but it has no effect on the energy
requirements for these shareable tasks.
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* Increasing the level of team redundanc with full awareness does nut improve
the time or energy requirements of t,? ks that cannot be (list ributed across more
than one robot.

* A team without awareness may be able to lperform a mission more quicklv than
a team with a lower level of redundancy if a significant proport ion of t he mission
consists of tasks whose effects can be sensed through the world.



Chapter 6

Additional Implementations of
ALLIANCE

The ALLIANCE architecture has been successfully implemented in a variety of proof
of concept. applications on both physical and simulated mobile robots. The applica-
tions implemented on physical robots include the hazardous waste cleanup mission
introduced in chapter 1 (also described in [Parker, 1994]) and a cooperative box
pushing demonstration. The applications using simulated mobile robots include a
janitorial service mission and a bounding overwatch mission (reminiscent of military
surveillancc). In this chapter, I describe the results of the box pushing demonstra-
tion and the simulated robot missions. Refer to chapters 3 and 5 for details on the
hazardous waste cleanup mission.

All of these missions using the ALLIANCE architecture have been well-tested.
Over 50 logged physical robot runs of the hazardous waste cleanup mission and over
30 physical robot runs of the box pushing demonstration were completed to elucidate
the important issues in heterogeneous robot cooperation. Many runs of each of these
physical robot applications are available on videotape. The missions implemented on
simulated robots encompass dozens of runs each, most of which were logged in the
study of the action selection mechanism.

Section 6.1 describes the physical robot experiments involving the box pushing
demonstration. Section 6.2 describes the simulated janitorial service mission, and
section 6.3 describes the bounding overwatch mission.

6.1 The Box Pushing Demonstration

In this report., the cooperative box pushing demonstration offers a simple and straight-
forward illustration of a key characteristic of the ALLIANCE architecture: fault tol-
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erant and adaptive control (lue to d*ynamnic changes in the robot team. I refer to this
example as a dewmonstration rather than a mi.ssion to emphasize the smaller scope
of the box pushing application compared to the other implementations of the AL-
LIANCE architecture. This demonstration was implemented for the primary purpose
of providing a concise video which illustrates the key points of this report.

This box p)ushing demonstration requires a long box to be pushed across a room:
the box is sufficiently heavy and long that one robot cannot push in the middle of
the box to move it. across the room. Thus, the box must be pushed at both ends
in order to accomplish this demonstration. To synchronize the pushing at the two
ends, the demonstration is defined in terms of two recurring tasks - (1) push a little
on the left end, and (2) push a little on the right end -- neither of which can be
activated (except for the first time) unless the opposite side has just. been pushed. I
implemented this demonstration using a heterogeneous robot. team of two R-2s and
Genghis-II. I use this demonstration to illustrate how the ALLIANCE architecture
endows robot team members with fault tolerant action selection due to the failure
of robot team members, and with adaptive action selection due to the heterogeneity
of the robot team. Note that my emphasis in these experiments is on issues of fault
tolerant cooperation rather than the design of the ultimate box pusher. Thus, I am
not concerned at present with issues such as robots pushing the box into a corner,
obstacles interfering with the robots, how robots detect box alignment, and so forth.

Cooperative box pushing is a popular task for multi-robot system researchers,
perhaps because of its minimal requirements for sensors and effectors. Of course, no
two box pushing scenarios are defined the same, as researchers (including myself)
naturally define the task to illustrate the advantages of their research. Donald et al.
[Donald et al., 19931 use a box pushing demonstration to investigate more general
issues of information complexity and information invariants. They define three al-
ternative control strategies for two-robot cooperative box pushing which vary in the
communication and sensing requirements. Their third control strategy (which they
call Protocol II) is of particular interest to the goals of the box pushing demonstration
I have defined here, since it can accomplish one type of fault tolerant cooperation that.
ALLIANCE allows below in experiment 1 - namely, the ability to recover from a
failed team member.' Protocol II uses no explicit communication, but rather assumes
the presence of a sensor that alloy ' a robot to detect, the orientation of the box with
respect to itself. By using orient-.ion information, a robot can detect the effects of
the actions of its teammates, and adjust its own actions accordingly by moving either
left or right along the box. If a robot's teammate fails, then that robot. can adjust.
its position right, or left as it pushes to maintain alignment of the box. However, the

IThis type of fault tolerance can only be obtained with the "'uniform" vcrsion of Donald's protocol

II, rather than the "almost uniform" version.
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Donald control strategy is specific to box pushing. and does not address the general

fault tolerant action selection problem that. is addressed with ALLIANCE.
In [Noreils, 1993], Noreils describes a cooperative box pushing experiment in which

one physical robot acts as the push(r to push a box against the wall, and a second
physical robot acts as a supervisor to ensure that the box actually reaches the wall.
If an obstacle is in the way which prevents this task from being completed, the two
robots adjust their positions so that they can push the obstacle out of the way. and
then the original pushing task is continued. The control architecture of these robots
consists of a. planner level (for planning the task), a control level (for supervising and
monitoring the execution), and a functional level (for controlling the sensors and ef-

fectors). In general, recovery from errors during cooperation is performed by -leader-
robots, which are designed to interact with other leader robots and "worker" robots
to ensure consistency of a re-planned solution. Although this research recognizes the
need for fault tolerant control, most issues of fault tolerance have not yet been well-
studied for this architecture, as admitted by Noreils in [Noreils, 1993]. For instance,
it is unclear in this architecture (1) how robots detect failed robots, (2) how the team
recovers from the failure of a leader, and (3) how the team handles communication
failures.

Kube and Zhang [Kube and Zhang, 1992] report on experiments in which robot
teams utilize only simple reflex behaviors and P.- explicit communication to gather
around a box (sensed as a bright light) and push it. Experiments are reported using
both simulated and physical robot teams. Under this approach, robots have only
implicit knowledge of the presence of other robot team members. Fault tolerance
is achieved in this architecture by ensuring the presence of an adequate number of
robots that can push anywhere along the box and still move the box. However, if
the number of robots were to fall below some critical threshold, the remaining robots
would not have the "know how" to compensate for the shortage, and would thus fail
at their mission.

In [Asama ct al., 1992], Asama et al. report on simulation experiments in which
two robots work to push objects to the sides of the room. Some of the objects can
be pushed by individual robots, while other objects require the cooperation of two
robots because of the weight of the object. When cooperation is required, one robot
communicates a request for cooperation, to which the second robot responds when
it is available. Their system also includes a path planning process to determine the
desired path over which the curreait object should be pushed. Issues of fault tolerant.
control are not addressed in their approach.

In the next subsections. I describe the design of the R-2 and Genghis-I1 AL-
LIANCE software for the box pushing demonstration. I then describe the experiments
using these robots and the results.
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6.1.1 Robot Software Design

Since the capabilities of the R-2 and Genghis-Il robots differ, the software design of
the box pushing demonstration for these robots varies somewhat. I therefore describe
the ALLIANCE box pushing software of these robots separately.

R-2 Control

Figure 6-1 shows the ALLIANCE implementation of the box pushing demonstration
for the R-2 robots. As shown in this figure, the R-2 is controlled by two behavior sets
- one for pushing a little on the left end of the box (called push-lcft), and one for
pushing a little on the right end of the box (called push-right). As specified by the
ALLIANCE architecture, the activation of each of these behavior sets is controlled by
a motivational behavior. Let us now examine the design of the push-left motivational
behavior and the push-left behavior set of a robot ri in more detail; the push-right
design is symmetric to that of push-left.

The sensory feedback required before the push-left motivational behavior within
ri can activate its behavior set is an indication that the right end of the box has just
been pushed. This requirement is indicated in figure 6-1 by the pushed-at-right arrow
entering the push-left motivational behavior. The right end of the box can be pushed
either by some robot other than ri, or it can be pushed by r, itself. If ri is the robot
doing the pushing, then the pushed-at-right feedback comes from an internal message
from ri's push-right motivational behavior. However, if some robot other than ri is
pushing, then ri must detect when that other robot has completed its push. Since
this detection is impossib!e for the R-2s with their current sensory suites, the robots
are provided with this capability by having the team members broadcast a message
after each push that indicates the completion of their current push. The pushing is
initiated at the beginning of the demonstration by programming the control code so
that each robot "thinks" that the opposite end of the box has just been pushed.

When the sensory feedback is satisfied, the push-left motivational behavior grows
impatient at either a rate b-_fastR (the R subscript stands for any R.-2 robot) if no
other robot is performing the push-left task, or at a rate 6 _slowR(robot-id) when robot
robot-id is performing the push-left task.2 When the push-left motivation grows above
threshold, the push-left behavior set is activated. The push-left behavior set involves
first acquiring the left end of the box and then pushing a little on that end. If the robot

2-To simplify the notation, I omit the j subscript, of the fast. and slow impatience rates (see

appendix A) since the fast rates of impatience are the same for all behavior sets in all R-2s, and the
slow rates of impatience are the same functions of robot-id for all R-2s. I also omit the dependence
upon t of these impatience rates, since I do not deal here with updating these parameters during
the demonstration.
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R-2 Box Pushing Control

pus"Wt-leff pushe•t-right+ -"" ° i
pushewt-at-ig-t push• ed-.at./at M

(comm. or internal) (comm. or internal)

IRs Acqure PuhIFS Acquire Pusa little 1 right at a little

stration.

is already at the left end of the box, then no acquiring has to take place. Otherwise.
the R-2 assumes it is at the right end of the box, and moves to the left end of the box
by using the infrared sensors on its right side to follow the box to the end, and then
backing up and turning into the box. As we shall see below, this ability to acquire
the opposite end of the box during the demonstration is important in achieving fault
tolerant cooperative control. At the beginning of the demonstration, I would ideally
like the R-2 to be able to locate one end of the box on its own. However, since this
is beyond the scope of these proof of concept experiments, an implicit, assumption is
made in the R-2 control that at the beginning of the demonstration, the R-2 is facing
into a known end of the box.

As the R-2 pushes, it uses the infrared sensors at the ends of its fingers
to remain in contact with the box. The current push is considered to .. complete
when the R-2 has pushed for a prescribed period of time. After the push-left task is
completed, the motivation to perform that task temporarily returns to 0. However.
the motivation begins growing again as soon as the sensory feedback indicates the
task is needed.
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Genghis-IT Control

Genghis-Ii and the R-2s are different in two p)rimary ways. First. Genghis-Il cannot
acquire the opposite end of the box, due to a. lack of sensory capabilities, and second,
Genghis-Il cannot push the box as quickly as an R-2, due to less powerful effectors.
The first difference means that Genghis-II can only push at its current location. Thus,
implicit in the control of Genghis-II is the assumption that it is located at a known
end of the box at. the beginning of the demonstration. The second difference with the
R-2s implies that if an R-2 pushes with the same duration, speed, and frequency when
teamed with Genghis-II as it does when teamed with another R-2, the robot team
will have problems accomplishing its demonstration due to severe box misalignment.

Figure 6-2 shows the organization of Genghis-II's box pushing software. As this
figure shows, (Venghis-II is controlled by two behavior sets, each of which is under
the control of a motivational behavior. Genghis-II's pushing at its current location
is controlled by the push behavior set. The only sensory feedback which satisfies the
push motivational behavior is that which indicates that some other robot is pushing
the opposite end of the box. This requirement is shown in figure 6-2 as the pushed-at-
left/right arrow going into the push motivational behavior. Once the sensory feedback
is satisfied, Genghis-II becomes impatient to perform the push behavior at a rate
6 .fastlp (the G subscript refers to Genghis-II; the P subscript refers to the push
behavior set). Once the motivation crosses the threshold of activation, the push
behavior set is activated, causing Genghis-II to push the box by walking into it while
using its whiskers to maintain contact with the box. Once Genghis-II has pushed
a given length of time, the motivation to perform push returns to 0, growing again
whenever the sensory feedback is satisfied.

The sensory feedback required for the go-home behavior set to be activated is the
opposite of that required for the push behavior set - namely, that no other robot
is pushing at the opposite end of the box. When the sensory feedback for go-home
is satisfied, the motivation to activate go-home grows at the rate 640fa,5101 (the H
subscript refers to the go-honmc behavior set), with the behavior set. being activated
as soon as the motivation crosses the threshold. The go-home behavior set causes
Genghis-II to walk away from the box.

6.1.2 Experiments and Results

To demonstrate the fault tolerant, adaptive nature of the ALLIANCE architecture
due to changes in the robot team capabilities, I undertook two basic experiments
using the box pushing demonstration. Both of these experiments began with two
R.-2s pushing the box - one at each end of the box - as illustrated in figure 6-3. 1
note that the fast rates of impatience were set such that the delay between individual
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Genghis-II Box Pushing Control
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Figure 6-2: The ALLIANCE design of the Genghis-lI software for the box pushing
demonstration.

pushes by each robot is quite small -e from imperceptible to about 2 to 3 seconds

depending upon when the .3 Hz communication messages actually get transmitted.
After the two R-2s push the box for a while I dynamically altered the capabilities

of the robot team in two ways. In the first experiment, I altered the team by seizing
one of the R-2 robots during the demonstration and turning it off, mimicking a robot
failure; I then later added it back into the team. In the second experiment, I again
seized one of the R-2 robots, but this time I replaced it with Genghis-er, thus making

the team much more heterogeneous; I then later seized the remaining R-2 robot.
leaving Genghis-II as the sole team member. The following subsections describe the
results of these two experiments.

Experiment 1: Robot "failure"

As I have emphasized. a primary goal of the ALLIANCE architecture is to allow
robots to recover from failures of robot team members. Thus, by seizing an R-2 and
turning it off, I test the ability of the remaining R-2 to respond to that "failure"
and adapt its action selection accordingly. In this experiment, what we observe after
the seizure is that after a brief pause of about. 5 to 8 seconds (which is dependent
upon the setting of the 6_sluOR(R-2) parameter), the remaining R-2 begins acquiring
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Figure 6-3: The beginning of the box pushing demonstration. Two R-2s are pushing
the box across the room.

the opposite end of the box, as shown in figure 6-4, and then pushes at its new end
of the box. This R-2 continues its back and forth pushing, executing both tasks of
pushing the left end of the box and pushing the right end of the box as long as it
fails to "hear" through the broadcast communication mechanism that another robot
is performing the push at the opposite end of the box. When I add back in the second
R-2, however, the still-working robot. adapts its actions again, now just pushing one
side of the box, since it. is satisfied that the other end of the box is also getting pushed.
Thus, the robot team demonstrates its ability to recover from the failure of a robot.
team member.

Experiment 2: Increased heterogeneity

Another goal of the ALLIANCE architecture is to allow hdt-rogenlous robot teams
to work together efficiently. Robots can be heterogeneous in two obvious ways. First,
robots may differ in which tasks they are able to accomplish, and second, robots may
differ in how well they perform the same task. In this experiment, I deal primarily
with the second type of heterogeneity, in which Genghis-II and the R-2 use quite
different mechanisms for pushing the box. By substituting robots during the middle
of a demonstration, I test the ability of the remaining team member to respond to
the dynamic change in the heterogeneity of the team.

What we observe in this experiment is that the remaining R-2 begins pushing
much less frequently as soon as it "hears" that Genghis-II, rather than an R-2. is
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Figure 6-4: Fault tolerant action selection. In this first experiment, I seize one of the
R-2 robots and turn it off. This causes the remaining R-2 robot to have to perform
both tasks of the box pushing demonstration: pushing at the right end of the box,
and pushing at the left end of the box.

the robot pushing the opposite end of the box. Thus, the robots remain more or less
aligned during their pushing. Figure 6-5 illustrates the R-2 and Genghis-II pushing
together.

The reduced rate of pushing in the R-2 when Genghis-I1 is added is caused by the
following. First of all, the R-2's 6 .slowR(R-2) and b1sio, UR(Genghis-II) parameters
differ quite a bit since Genghis-II is much slower at pushing the box than the R-
2. Note that these parameter differences are easily learned by these robots using
the features of the L-ALLIANCE architecture which allow the robots to the monitor
the performance of robot team members. In this case, the R-2s learn parameters
in which &soU'R (Genghis-II) is less than 6.slowR(R-2). With this in mind, let us
assume that the R-2 is pushing on the left of the box, and that Genghis-II is swapped
into the team on the right end of the box. Since Genghis-II takes longer to complete
its pushing than the old R-2 did, the sensory feedback of the remaining R-2's push-
left motivational behavior is not satisfied as frequently, and thus the R-2's push-
left behavior set. cannot be activated as frequently. In the meantime, the push-right
motivational behavior of the remaining R-2 is becoming more impatient to activate the
push-right behavior set. since it is not "hearing"' that any other robot. is accomplishing
that task. However, since the push-right motivation is now growing at. a reduced
rate of impatience, &slowR(Genghis-II), the motivation to activate the push-right
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........ .......

Figure 6-5: Adaptivity due to heterogeneity. In this second experiment, I again seize
one of the R-2 robots, but this time I replace it with Genghis-II. Since Genghis-II
cannot push as powerfully as an R-2, the remaining R-2 robot adapts its actions by
pushing less frequently.

behavior set does not cross the threshold of activation before Genghis-Il announces
its completion of the task. This in turn prevents the remaining R-2 from taking over
the push of the right side of the box as long as Genghis-lI continues to push. In
this manner, the R-2 demonstrates its ability to adapt to a dynamic change in team
heterogeneity.

I complete this experiment by removing the remaining R-2 from the team. This
causes Genghis-II to activate its go-home behavior, as shown in figure 6-6. Thus.
Genghis-II also demonstrates its adaptive action selection due to the actions and
failures of robot, team members.

6.1.3 Discussion

One last point I want to stress with the box pushing demonstration is the ease with
which this demonstration was implemented using ALLIANCE. The time required for
me to implement this demonstration on the robots from when the box was built until
I had the videotaped results was exactly I week. Granted, my definition of the box
pushing demonstration does not include the very difficult problems of maintaining
box alignment, preventing the robots from pushing into corners, and so forth. How-
ever, as stated earlier, the point of these experiments is to demonstrate the adaptive
action selection features of ALLIANCE rather than the ultinmte box pusher. Another
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Figure 6-6: Response to robot failure. At the end of the second experiment, I seize the
remaining R-2 robot, leaving Genghis-II alone to perform the demonstration. Since
Genghis-II cannot complete the demonstration on its own, it activates its go-homf
behavior set.

way of stating this is that my emphasis is on the development of the motivational
behaviors rather than on the behavior sets, since the interaction of the motivational
behaviors is what specifies the action selection characteristics of the robot team. In
fact, the implementation of the motivational behaviors for this demonstration was
quite straight-forward. The main problems I had in this implementation concerned
weaknesses in robot sensing capabilities, which made the development of the behavior
sets challenging. The primary difficulty was in overcoming noisy infrared sensors and
inconsistent wheel servo control loops to allow the robot to reacquire the opposite
end of the box without losing the box. Nevertheless, this problem was overcome well
enough to obtain numerous videotaped runs of successfully completed demonstra-
tions.

6.2 The Janitorial Service Mission

As another illustrative example of the type of cooperation we would like a collection
of robots to be able to accomplish, consider a janitorial service team of robots. This
type of robot team is required to clean a room in an office building that is unfamiliar
to the robots at the beginning of the task, and may change dynamically due to people
occupying the room. The overall mission consists of three high-level tasks: emptying
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the garbage, dusting the furniture, and cleaning the floors. The robots assigned to this
mission are not familiar with the capabilities of the other robots In the team. which
may change dynamically due to mechanical failure or environmental change. Each
robot has a different mixture of capabilities which allows it to complete a portion of the
mission on its own. However, since no single robot has all the capabilities necessary
to accomplish the mission alone, the robots must work as a team. Due to limited
time and energy. we would also like the robots to accomplish their mission efficiently.
minimizing redundant actions as much as possible. The efficiency requirements and
the dynamic environment of this mission require the robots to adapt their activities
over time due to the current and previous actions of other robots, and to the sensory
feedback received from the environment.

This mission offers the opportunity to illustrate methods of implementing the
ALLIANCE architecture for missions involving numerous independent repetitions of
the same subtask. For example, although this mission is composed of three high-
level tasks - emptying the garbage, dusting the furniture, and cleaning the floor -
each of these tasks involves a number of separate subtasks which could be performed
independently by more than one robot, such as having different robots dust different
pieces of furniture simultaneously. Of course, we would not want to have a separate
motivational behavior and behavior set for each piece of furniture to dust, or for each
garbage can to be emptied. Instead, we illustrate some techniques for allowing one
motivational behavior to control which subtask a given robot elects to perform. A
slightly different method of this task subdivision is used in this mission for each of
the three high-level tasks.

In the remainder of this section, I describe the results of implementing this jan-
itorial service mission asing the robot simulator cescribed in chapter 2. First, the
software control of the robots is presented, followed by the results of the team's per-
formance.

6.2.1 Robot Software Design

In my experiments with the janitorial service team. I varied the capabilities of the
robots so that different robots would be able to perform different subsets of the
required tasks. For example, one robot may be able to dust the furniture and clean
the floor, while another robot may be able to empty the garbage and clean the floor.
Rather than illustrating all possible combinations, however, this subsection describes
the capabilities of a generic robot that is able to perform all of the tasks of this
mission. Since the behavior sets are independent, those behavior sets not appropriate
for a robot without all of these capabilities can be easily removed from that robot's
software control. Figure 6-7 shows the software control of a robot which can perform
all of the tasks required in the janitorial service mission. In this design, three behavior
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Janitorial Service: Behavior Organization
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Figure 6-7: The ALLIANCE-based control for the Janitorial service mission. Not all

inputs and outputs are shown. Refer to figures 6-8 through 6-10 for more detasl.

sets -f empty-garbage, dust-furnituret and csansfloor.- are each controlled by a
motivational behavior.

A number of assumptions were made in this application to make this mission

tractable. As with the box pushing demonstration, the purpose of this imflemen-

tation is to illustrate the ability of ALLIANCE to generate fault tolerant, adaptive
cooperative control; the purpose is not to generate the ideal garbage emptying behav-

ior, furniture duster, or floor cleaner. Thus, I experimented with various approaches

to the design of the Janitorial service behavior sets, and made several assumptions

about the capabilities of the simulated robots and the structure of the robot team's

environment. These assumptions are described in the following subsections as the

control for each of the three behavior sets is discussed.

Empty-garbage behavior set

The software design of the empty-garbagc behavior set is shown in figure 6-8. To
simplify a robot's detection of the garbage cans, I assume that a high frequency

emitter is attached to each can. To allow the garbage emptying task to be divided
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Figure 6-8: The robot control organization within the cmupty-garbagc behavior set.

across more than one robot., I assume that a small i b)er of different frequency
emitters are available, and are distributed somewhat iii 1iformly across the garbage
cans in the room. I further assume that each garbage emptying robot has two sensors

for detection of each frequency used in the mission, for use in localization. Using more
than one frequency allows one robot. to concentrate on emptying the cans emitting a
given frequency while some other robot. empties those of a. different frequency. Finally.
I assume that once the garbage is emptied out of a particular can, that garbage can's
high frequency emitter is turned off.

The sensory feedback required before the cmpty-g,,rbagf behavior set can be acti-
vated is the detection of some high frequency sound which indicates the need to empty

a garbage can. Once this sensory feedback is received, the lnipty-.qarbagf motivational
behavior grows impatient to activate its behavior set. for that high frequency sound

at either a fast. or a slow impatience rate. depending upon the current activities of
the team members. Note that the motivational behavior monitors more than one

rate of impatience for this behavicr set - one for each pair of frequency detectors of
the given robot. If some other robot is currently working on emptying the garbage
cans emitting a given frequency (as indicated through its broadcast. communication
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message of the type "'ri emptying garbage frequency .' ), then the corresponding mo-
tivation grows at a slow rate: otherwise, it grows at a fast rate. Once the mnotivatioll
to activate the behavior set for a given frequency value has growni above t lhreshold.
the motivational behavior sc(,ls a message to the behavior set indicating the garbage
call frequency that behavior set should listen to. and the behavior set becomes ac-
tive. The behavior set then proceeds to follow the gradient of the given frequency
until it reaches the garbage call. at which point the effector for emnp)tying the garbage
(which could be a powerful vacuum, a manil)ulator. etc.) is activated until the call is
emptied.

Dust-fu-rniture behavior set

The software design of the duwt-furnilure behavior set is shown in figure 6-9. In
this mission, a dustable piece of furniture is defined as any object, less than a given
height. This is implemented on the robots by having two rings of proximity sensors
- one higher than the given dustable object. height and one lower than the given
height. Thus, any object which triggers the second ring of sensors. but not the first
ring, should be dusted. To reduce the difficulty of the dusting robot's task. I assume
that each furniture dusting robot is told the number of dustable objects in the room
at the beginning of the mission. However, the robots do not know the locations of
the furniture, and must thus search for them. I further assume that some global
positioning system, such as that described in chapter 2. is available to the robots
for uniquely identifying a dustable piece of furniture by location. Finally. I assume
that when a robot activates the dust-furniture behavior set. it broadcasts one of three
messages: (1) if the robot is currently searching for a dustable object, it broadcasts a
generic 'ri dusting furniture" message; (2) if the robot has actually located a yet-to-
be-dusted dustable object, it broadcasts a message such as 'ri dusting furniture at
location xr, y", which indicates the global position of the piece of furniture it is dusting;
or (3) if the robot has concluded the dusting of a piece of furniture, it broadcasts a
message such as "ri completed dusting of object at location x, y".

The sensory feedback required for the dust-furniture motivational behavior to
consider activating its behavior set in robot. ri is that fewer than the given number of
dustable objects have actually been dusted either by ri or by some other robot team
member (as indicated through the broadcast communication mechanism). Thus, the
dust-furniture motivational behavior becomes impatient. at a fast rate of impatience
as long as dustable objects remain to be dusted. However, t~he dust-furniture task is
considered to be a task that can be shared by more t~hat one robot team member.
Thus, we would like more than one robot to be able to search for objects to dust,
but we do not want them to attempt to dust the same object at the same time. or to
dust an already-dusted piece of fulrniture. Thus, the motivational behavior also keeps
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track of the locations of furniture objects that have been dusted or are being dusted
by some other robot. If another robot, rk. is currelntly dusting some object, then tile
motivational behavior of robot ri allows 1'. some period of time (according to a slow

rate of impatience) to complete the dusting of that object. However, if that object

remains undusted for a period of time (as indicated by the communication feedback),
ri's dust-furniturf motivational behavior becomes impatient with 1 k. and thus the

object that rk is (lusting also becomes fair game for ri to (lust. The information about
which dustable objects to ignore is conveyed to the behavior set by the motivational
behavior. Thus, whenever the motivation to activate the dust-furnilure behavior set
crosses the threshold of activation, the motivational behavior also sends the locations
to the dust-furniture behavior set of furniture objects to ignore. The dust-furniturf
behavior set then searches for objects to dust, but ignores those dustable objects
which are located at one of the locations on the "ignore list". In this manner, the
robots can share the task of dusting the furniture without getting in each other's way.

The dust-furniture behavior set involves a simple wandering technique to search
the room for objects yet to be dusted. A more methodical method of searching the
room, such as that used in the clean-floor behavior set. (see below), could certainly be
used instead of a random walk. However, it was interesting to use a variety of tech-
niques in this application to investigate the characteristics of the various approaches.
Once a dustable object not on the "ignore list" is located, it is approached, and the
robot uses some dust effector to dust the object as it circles around the accessible
sides of the object. Note that I did not model the kinematics and dynamics of a
physical dust effector here - a major simplifying assumption. Again, this type of
modeling is outside the scope of this demonstration of adaptive cooperative control.

Clean-floor behavior set

The third task of the janitorial service team is to clean the floor. The organization
of the clean-floor behavior set is given in figure 6-10. To ensure that the entire floor
gets cleaned efficiently, this behavior set utilizes a coarse grid map to keep track of
the areas already cleaned, those yet to be cleaned, and those that are inaccessible due
to obstacles. An assumption for this behavior set is that the room to be cleaned is
rectangular, but its dimensions are unknown. A cleaning robot is then first required
to circle the perimeter of the room to determine its dimensions (not unlike the ap-
proach to locating the spill in the hazardous waste cleanup mission - see section 3.8),
cleaning as it goes, and then to begin cleaning the remainder of the room. As with
the empty-garbage and dust-furniture tasks, we would like the clean-floor task to be
potentially divided across more than one robot. Thus, this behavior set is designed
to clean the floor by quadrants after the initial room dimensions are determined.
with different robots potentially cleaning different quadrants of the room. The mes-
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sages communicated by the clean-floor motivational behavior are of three types: (1)
"ri finding room dimensions", (2) "ri cleaning quadrant q", and (3) "r, completed
cleaning of quadrant q".

The sensory feedback required before the ckean-floor behavior set can be activated
in robot ri is that some quadrant remains to be cleaned either by robot r, or bY some
other robot. as determined from the broadcast communication messages. The moti-
vation to activate the clean-floor behavior set thus grows at a fast rate of impatience
as long as some quadrant remains to be cleaned. However, as with the dust-furniture
and cnmpty-garbage behavior sets, we do not want robots to interfere with each other's
efforts by having all the cleaning robots selectilig the same quadrant to clean, to the
exclusion of the remaining quadrants. Thus, the motivational behavior keeps track
of the quadrants currently being cleaned by other robots, and becomes impatient t.o
clean those quadrants at a slow rate of impatience. When the motivation to activate
clean-floor crosses the threshold of activation, the motivational behavior informs the
clean-floor behavior set of the quadrant it should clean, based upon these rates of
impatience.

When the clean-floor behavior set is activated in robot ri. ri first determines the
dimensions of the room as described above (if it has not already found the dimensions),
and then begins cleaning the quadrant specified by the motivational behavior. A more
efficient method of implementing this behavior set would be to separate this task into
two separate tasks - (1) finding the room dimensions, and (2) cleaning a quadrant -
as done in the hazardous waste cleanup mission (see section 3.8). This would allow
one robot to find the room dimensions and communicate the information to other
floor cleaning robots.

Cleaning a quadrant requires the robot to visit every square within a coarse grid
of that quadrant, or determining through contact and proximity sensors that a grid
area is inaccessible due to obstacles. The simplistic algorithm used for covering the
quadrant is as follows:

If (grid cell to my right is unvisited), then turn right.
Else, if (grid cell to my front is unvisited), then go straight.

Else, if (grid cell to my left is unvisited), then go left.
Else, search for an unvisited, unoccupied cell.

If found, head toward it.
Else, declare completion.

As the robot traverses the quadrant, it uses its proximity and contact sensors
to mark grid cells occupied by obstacles. It also marks its current grid location as
visited. The coarseness of the grid, the location of obstacles, and the simplistic nature
of this traversal algorithm leads to an interesting -snaking" pattern of coverage, as
shown in the later snapshots of figure 6-12, which is explained in more detail below.
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Confirmation of completed tasks

An additional comment is in order lere on how robots confirm the co0iletion of tasks
performed by other robot s. As 1 have emphasized th roughout t his rel)ort. mechanical
problems may lead a robot to "think" tha, it has successfully completed a task when.
in fact. it has not. Thus, it is important for achieving truly fault tolerant cooperative
control that robot team members verify the success of the actions of its teamimnates.
However, we do not want robots to spend all of their time checking up on their
neighbors when known incomplete tasks remain to be performed. A compronise.
then, is to provide robots with additional low-priority behavior sets (that is, behavior
sets with very slow rates of iv,)atience) that are responsible for verifying the results
of previously completed tasks. These behavior sets would be activated towards the
end of the mission after the primary tasks are complete, and would involve re-visiting
dustable objects, garbage cans. and/or quadrants of the room to ensure the tasks
were successfully completed. If the sensory feedback indicates that a task was not
successfully completed, this feedback would again trigger the appropriate behavior set
in that robot, and thus cause that task to be re-executed. Although I did implemeit
this type of verification behavior set. in my simulation experiments, the details are
omitted from figure 6-7.

6.2.2 Results

Snapshots of a typical run of the janitorial service robot team simulation are shown
in figure 6-12. In this run, the team is composed of three robots, which are shown in
the lower left corner of the first frame of figure 6-12. Each of these robots can perform
two of the tasks of the janitorial service mission: robot rl (the leftmost robot) can
perform crnpty-garbage and dust-furnitur(, robot r2 (the center robot) can perform
empty-garbage and eohan-floor, and robot. -3 (the rightmost robot) can l)erform dust-
furniturf and chian-floor. In this example, the mission involves three garbage cans
and three dustable objects; figure 6-11 indicates the identity of the various objects in
these simulation snapshots.

Under the ALLIANCE control, these robots were able to successfully divide the
tasks among themselves in a reactive and dynamic fashion to accomplish their mission
without duplicating the actions of other robots. As an example of the adaptation of
action selection due to the actions of other robots, consider the first 4 frames of
figure 6-12. Initially, robots rl and 7'2 both select the action of emptying the garbage,
and both head up toward the closest garbage can, while robot. r3 elects to dust the
furniture. However, upon hearing that robot r 2 is also headed to empty the same
garbage can, robot rl is satisfied that that, garbage can will be emptied, and thus
selects another garbage can to empty (in this case, the one to the lower right, as
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shown in the second snapshot ). After emptying its garbage can. robot r2 theii heads
toward the third garbage can to the right center of the room (as seen in the third
and fourth snapshots), bypassing the garbage can that robot r, has empt ied. Robot
r, is then satisfied that all garbage cans will be emptied, eveii though robot ri2 has
not yet reached the third garbage can, and proceeds to select another action -- that
of dusting furniture - as seen in the fourth snapshot.

Also shown in the fourth snapshot, is robot r2 completing the emptying of the last
garbage can. Robot r2. in snapshot five, then selects to clean the floor, which requires
it to first circle the perimeter of the room. as shown in snapshots five through nine.
In the meantime, back in the fifth snapshot, r-3 completes its dusting of the circular
object, and proceeds to search for another object to dust. It wanders the room until
the sixth snapshot, at which time it hears that r, has completed dusting the last piece
of furniture. This causes 1'3 to go on to another task. namely that of cleaning the
floor. To clean the floor, robot, r3 first circles the perimeter of the room, as shown in
snapshots six through ten. It. then proceeds to clean the upper left quadrant.

After r, completes its furniture dusting in snapshot six, all of its tasks - emptying
the garbage and dusting the furniture - are complete. Thus, it has nothing left to
do (this example does not include the verification behavior sets), causing it to wait
out the rest of the mission in its current location.

Once r2 completes its circle of the perimeter in snapshot nine, it begins cleaning the
lower right quadrant in snapshots ten and eleven while robot r 3 continues its cleaning
of the upper left quadrant. Robot r 2 then goes on to clean the floor of the upper right
quadrant in snapshot 12, and then to the lower left quadrant in snapshots 13 through
fifteen. In the meantime, the obstacles in the upper left. quadrant have caused r3

difficulties in cleaning the upper left. quadrant. It finally completes its cleaning of
that quadrant in the final snapshot, at which time the mission is complete.

In other experiments with this mission, many unexpected events have been mod-
eled to illustrate the adaptiveness of the architecture to the dynamic environment.
and the actions of other robots. For example, in the discussion above, if either of the
robots ri or r 2 were unsuccessful in emptying one of the garbage cans, the other robot
would become impatient with the lack of progress and proceed to empty that can re-
gardless of the fact that the other robot had selected that action earlier. If additional
garbage cans are added, the robots react fluidly to the environmental change and
empty the new cans as if they were always present. If an existing garbage can is sud-
denly empty, the robots again react immediately by pursuing some other task. New
team members can be added to the group and are allowed by the existing team mem-
bers to help with the mission. Many other such changes to the environment and the
abilities of the robots were simulated and handled successfully by this architecture.
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Figure 6-13: Elapsed time results of 10 runs of 4 values of pi. (Asterisks denote the
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6.2.3 Effect of Robot Awareness

As described in chapter 5, the degree to which robots are aware of the actions of their
teammates affects the efficiency of the mission execution. The results in chapter 5
were derived from experimentation with the hazardous waste cleanup mission. In
this subsection, I present the results of a. related study of robot awareness for the
janitorial service mission. In this study, I present the results of varying the rate of
broadcast communication. pi, to determine its effect on the resulting group behavior.
In these experiments, the performance measure utilized to provide quantitative com-
parisons between the cooperative team behaviors across experiments was the mission
completion time, which is simply the elapsed time from the beginning of the mission
until the last task of the mission is completed. Figure 6-13 shows the results of four
experiments that were conducted which varied the rate of communication for each
robot and compares these results with the optimal time expenditure that is possible3 .
The measurements for each of 10 runs for each communication rate are shown, along
with the mean values. The variance in performance for a given communication rate
is due to sensory and effector noise.

In the first. experiment, pi equals 0 for all i, which means that. no conmmunica-
tion at all took place, which in turn means that no robot knew anything about the

3The optimal time measure was obtained by human engineering all the parameters to achieve the
minimum time possible for this task with the given robots.
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current actions of other robots. \\e discover that eveni though the robots required
much more time than the optimal, they were still able to accomnplish their missiOn
successfully, completing the mission iii an average of 438 time units. This result is im-
portant because it illustrates the robustness of the architecture even amidst conl)lete
communication breakdown.

In the second experiment, pi equals 0.1 for all i. which means that each robot
broadcasts a message of its current activities at a rate of I every 10 seconds. We see
that this small amount of communication significantly improved perforlnance over no
communication at all, with a mean reduction of 22/% in required time.

In the third experiment, pi equals 0.5 for all i. so that robots communicated a
message every 2 seconds. Again, we see a performance improvement over the previous
experiment of 10% in time.

However, we see from the fourth experiment, in which pi equals 2 for all i. that
we are not getting closer to the optimal solution. As might be expected, one cannot
necessarily achieve the optima.l solution by just increasing the communications rates.
Instead, achieving the optimal solution involves varying other parameters through
the L-ALLIANCE learning mechanism to improve the efficiency of the team perfor-
mance. The janitorial service mission is a good example of the type of mission in
which the L-ALLIANCE efficiency mechanisms would be particularly useful. This
mission involves a number of independent tasks which can be executed by differing
subsets of robot team members at possibly differing levels of performance. By using
the techniques described in chapter 4, the robot team members could use learned
knowledge about the capabilities of their teammates to select their tasks to achieve
very efficient mission completion times. Unfortunately, time did not allow experimen-
tation of the L-ALLIANCE mechanisms in this particular application. However, the
generic results presented in chapter 4 apply directly to this type of application.

Thus, the findings from these experiments support those of chapter 5: although
useful work can be accomplished without robots knowing about other team members'
activities, improved performance can he achieved when robots are aware of the current
actions of their teammates. However, these experiments also show that knowledge of
current activities alone is not sufficient to achieve the optimal performance, and thus
additional learning mechanisms are required to achieve optimal performances.

6.3 The Bounding Overwatch Mission

An additional, quite different, simulation application also implemented using AL-
LIANCE is the bounding overwatch problem. The point of this mission is to illus-
trate how ALLIANCE can be used for applications that involve a lot of ordering
dependencies among tasks, rather than being composed of several independent tasks.
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This mission requires a team of two types of robots to d'naiiicall divioe I heinselves

into two subgroups having equal dist rilbutilon of robot types. and then to travel to

the initial assemlbly points of their respective subgroups and determine a subgrouip
leader. Next, one team must head out for the next waypoint (i.e., they bound) while
the other team monitors their progress and remains alert for danger (i.e.. they or,( r-
watch). Once the first team reaches its waypoint, the roles of the teanis switch. so
that the first team overwatches while the second team bounds. As the reader may
suspect, this mission is motivate- by a military surveillance sceiario, in which a team
of autonomous vehicles (such as tanks) must safely traverse an area thought to be
occupied by enemy forces.

6.3.1 Robot Software Design and Results

Figure 6-14 shows the ALLIANCE-based control of the robots under the bounding
overwatch mission. At the beginning of the mission, the only behavior set whose
sensory feedback is satisfied is the join-group behavior set. Since this task must be
performed by all robot team members, the motivational behaviors in all the robots ac-
tivate this behavior set at the beginning of the mission This behavior set is important
because it allows the team of robots to divide themselves into two equal subgroups.
This division is accomplished using the following simple rule in each robot:

Wait a random length of time t (between 0 and some prespecified
maximum time).

While waiting, monitor the messages of robot team members,
keeping track of the number and type of robots in each
subgroup so far.

After the random wait period is over, do the following:
1. Select the subgroup with the minimum number of my type so far.
2. If the two subgroups have equal distributions of my type,

Then: Select the group with the fewest members,
breaking ties arbitrarily.

3 Broadcast the group I have joined and my robot type.

The prespecified maximum time of a wait should be long enough to reduce the like-
lihood of interference between robot messages to an acceptable level. Once a robot
has joined a. group, it moves to the prespecified gathering location for its group. The
first snapshot of figure 6-15 shows the initial location of a group of eight robots --
four of each of two types. The second snapshot shows the robots dynamically divid-
ing into the two groups and moving to the specified gathering locations (indicated in
figure 6-15 by the two small triangles closest to the robot starting locations).
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Figure 6-14: The ALLIANCE-based control for the bounding overwatch mission.

The preconditions for the cinfqe-ieader behavior set. to activate in robot ri are
that (1) ri has arrived at (more accurately, visited) its group's initial gathering point,
and (2) ri's group does not yet have a group leader. If these conditions are met, then
the emerge-leader behavior set is activated. The result is that the first robot to arrive
at its group's gathering point becomes that group's leader. An interesting side-effect
of this definition is that if, at any point in the future, robot ri's group loses its leader.
then ri will become motivated to emerge as the team's ieader. Since many other team
members will also have this motivation, the relative rates of impatience across robots
will determine which robot actually does emerge as the leader. Ideally, the rates of
impatience are set such that the robots which make better leaders become motivated
more quickly to become a leader. If there is ever a tie in which more than one robot
decides to become a leader at the same time, a fixed priority among the robots breaks
the tie.

Once all the robots have gathered at their starting locations and the leaders have
emerged, the preconditions for the overwatch behavior set are satisfied in all of the
robots, causing all the robots to begin watching out for some sort. of danger. such as
the presence of an enemy agent. (In this simulation, however, no sources of danger
were modeled.) The precondition for the lead-to-w, ypoint behavior set, in a leader
robot is that the previous team has just bounded to its next waypoint. In order to
initiate the bounding at the beginning of the mission, this condition is hardcoded into
the leader of the first team as soon as its team has collected al, the initial gathering
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location. Thus, the leader of the first team initiates the bounding to the next way-
point. This, in turn, satisfies the preconditions of the follow-hadcr behavior set in
the remaining robots on the first team. The result is that the leader robot leads the
team to the next waypoint while the rest of its team follows along. The members of
the second team, in the meantime, have activated their ovcruwatch behavior sets, and
are overwatching the first team's progress. This scenario is shown in the third frame
of figure 6-15.

Once the first team's leader has arrived at its next waypoint, the completion of
the lead-to-waypoint is broadcast. Upon hearing this, the leader of the second team's
preconditions for lead-to-waypoint are satisfied, causing it to lead its team to its next
waypoint while the first team overwatches. This continues, as shown in figure 6-15,
until the teams reach some prespecified destination.

This illustration describes the basic idea behind the fault tolerant execution of the
bounding overwatch mission. One can imagine much more complex versions of this
mission that involve numerous roles (such as clearina paths, monitoring the rear of the
group, searching for good waypoints, and so forth) that must be carried out by various
team members. These roles can be easily and dynamically reallocated among team
members with the ALLIANCE architecture when needed due to the failure of robot
team members or due to increased requirements of the mission (perhaps due to an
attack of enemy forces) in the same way as the leader role is dynamically reallocated
in this example.

6.4 Summary

In this chapter, three additional proof of concept implementations of the ALLIANCE
architecture have been presented: the box pushing demonstration on physical robots,
and the janitorial service and bounding overwatch missions on simulated robots. The
box pushing demonstration offers a short, easily understood example of key charac-
teristics of the ALLIANCE architecture - fault tolerant control amidst the failure of
robot team members, and adaptive control due to changing capabilities of the robot
team. The janitorial service application offers an example of a mission involving nu-

merous independent tasks that must be carried out, and the ability of ALLIANCE
to allow robot team members to select their actions to eliminate duplication of ef-
fort. It also illustrates an example in which the L-ALLIANCE architecture can be
of particular benefit in improving the efficiency of the team performance. Finally,

the bounding overwatch mission offers an illustration of how several tasks with fixed
ordering constraints can be solved using ALLIANCE. This architecture offers an easy
way to achieve dynamic role transferral in missions involving changes in the environ-

ment or in robot team. These applications, along with the hazardous waste cleanup
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mission described in chapter :3, illustrate the wide variety of applications for which
the ALLIANCE architecture is suited.



Chapter 7

Designing Control Laws

As we have seen, the ALLIANCE and L-ALLIANCE architectures allow robot teams
to accomplish missions of loosely coupled, largely independent subtasks with a sig-
nificant degree of coherence. However, the extent of coherence attainable by these
teams has been shown to be dependent upon the knowledge individual robots possess
concerning the current actions and previous performance of their teammates. This
knowledge can actually be viewed as partial global information about the current
state and intentions of the robot team. The more limited this global knowledge be-
comes, the more each robot depends upon its own local knowledge for action selection,
which may in turn decrease the coherence of the team. However, due to the design
of ALLIANCE and L-ALLIANCE, the use of the global knowledge is fortunately not
detrimental to the processing requirements of the individual robots. Thus, the use of
global knowledge can be incorporated into ALLIANCE and L-ALLIANCE without
impacting the team performance.

It is interesting to step back for a momer-t and consider whether this principle of
"increased global knowledge implies increased coherence" holds for a different type
of cooperative robot mission - namely, one requiring spatial coordination among
robot team members. It is appealing to be able to develop control laws that utilize
strictly local information such that the desired group coordination emerges from the
interaction of the local control laws. Indeed, research has shown that certain types
of spatial coordination missions can be achieved using local control knowledge alone
[Deneubourg et al., 1992, Drogoul and Ferber, 1992, Franklin and Harmon, 1987, Goss
and Deneubourg, 1992, Kube and Zhang, 1992, Miller, 1990, Steels, 1990, Stilwell and
Bay, 1993, Theraulaz et al., 19901. However, the question that remains is determining
the degree to which group coordination and coherence can be achieved for a given
application with purely local control knowledge, and when more global knowledge is
needed to obtain the desired results. While I do not attempt to answer this question
thoroughly here, I do describe the results of one case study - keeping formation -
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which, at first glance. appears to be an application that can be solved using local
control alone. However. upon further investigation, we discover that local control
rules are not sufficient to obtain the desired level of performnance for the mission.

The following sections first distinguish between the notions of global control and
local control and then examine the tradeoffs between the two types of control laws.
I present the -Keeping Formation" case study which stimulated my thoughts on the
local versus global control issues, discussing the design and implementation of several
alternative control strategies and the results. This chapter concludes with a summary
of the general principles and guidelines derived through this case study. (See [Parker,
1993a] for a related discussion of this issue.)

7.1 Descriptions of Global and Local Control

In practice a continuum exists between strictly global and strictly local control laws.
Thus, the control laws guiding a robot will probably use a mixture of local and global
knowledge, rather than adhering strictly to one type alone. To simplify the discussion,
however, these types are considered separately in this section, which compares and
contrasts these two types of control.

7.1.1 Global Control

Global control laws utilize the global goals of the cooperative team and/or global
knowledge about the team's current or upcoming actions to direct an individual
robot's actions. With these laws, a robot is able to influence its own actions toward
team-level goals that cannot be sensed in its own local world. To better understand
the implications of the use of global control laws, let us look individually at the
two types of information utilized by these laws: global goals and global knowledge.
The global goals of a team indicate the overall mission that the team is required
to accomplish. These goals are typically imposed upon the team by a centralized
controller, such as a human or another autonomous robot. Often this controller is a
robot from outside the cooperative team rather than from within, although it is not
uncommon to have a leading robot within the team specifying these goals.

Of particular impact on the design of cooperative teams is the time at which the
global goals become known[Payton, 19911. If the goals are known and fixed at design-
time, then it may be possible to incorporate these goals implicitly into the control
laws of each robot. Whether this can be done depends on the proper match between
the sensing capabilities of the robots and the sensing requirements of the global goals.
If all the information required for a robot to act consistently with the global goals
can be sensed locally by that robot at run-time, then the global goals can be designed
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into the robot. On the other hand, if the goals are not fixed or known at design-time.
then they obvously cannot be designed into the robots. In this case. the robots must
possess the capability to obtain and appropriately act upon the goals 1)rovided at
run-time.

The second type of information used by global control laws, global knowkhdg(.
refers to the additional information that may be necessary for the cooperative team
to achieve the global goals. This information typically indicates what other robots in
the team are doing or are going to do, or what the environment looks like in relation to
the current cooperative task. By definition, all such information is normally not avail-
able to the individual robots through their sensors (other than their communication
channels); if it were, then I would consider it to be local information.

How does a robot obtain this global knowledge? Several methods are possible.
Perhaps the most obvious manner is for a centralized informant (either a human
or an autonomous robot either inside or outside of the robot team) to explicitly
communicate the information directly to the team as it becomes available. The robots
can then utilize this explicitly communicated information as advice, along with locally
sensed data, to undertake appropriate actions which are consistent with the global
goals. A second method of obtaining global knowledge, albeit in an approximate
form, is for robots to passively observe and interpret the actions of another robot
as described in the earlier chapter on action recognition. Combined with some goal
recognition, this method would allow a robot not only to interpret a teammate's
current actions, but also to predict that robot's future actions. In a sense, this method
utilizes implicit communication, since the observing robot receives information from
the actions of the observed robot.

The use of global goals and information is not without its shortcomings, however.
Adequate global information may not be available to achieve the desired global goal.
Even with global knowledge, a robot may still not exhibit optimal global behavior un-
less it utilizes all of the global knowledge available. Processing this global information
requires time and resources, both of which are usually limited in real-world applica-
tions. If the global goals or information is changing often enough, the robot may not
be able to act upon the global knowledge before it becomes out-of-date. Indeed, in
some situations, global control of any kind will be impossible, thus mandating the
use of local control.

7.1.2 Local Control

Local control laws, on the other hand, guide a robot's actions based on the proximate
environment of that robot. Such information is derived from the robot's sensory
capabilities, and thus reflects the state of the world near the robot. Local control
laws allow robots to react to dynamic changes in their environment without relying
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on preconceived plans or expectations of the world. As I have noted, careful design
of the control laws can allow global functionality to emerge from the interaction of
the local control laws of the individual robots. For example. Franklin and Harmon
[Franklin and Harmon, 1987] have shown that a global cooperative hunting behavior
emerges from the use of three local cooperative control laws: cooperative pursuit.
triangulation, and encirclement. These control laws are appealing because of their
simplicity and power to generate globally emergent functionality.

However. local control laws also have their limitations - certain global goals
cannot be attained through the use of local control laws alone. In some cases, it may
be possible to utilize local control laws to achieve an approximation to the optimal
results, which may be totally acceptable for many applications. However, since local
control relies strictly on features of the environment that can be sensed, those aspects
of global goals that have no physical manifestation in the world cannot be acted upon
by local control laws.

7.2 Keeping Formation Case Study

Let us now look at the keeping formation case study to see what we can learn about
the level of control attainable with various combinations of local and global control.
I have implemented and evaluated several control strategies along the local versus
global spectrum by performing a wide range of experiments in simulation. For each of
the control strategies, I measured the results quantitatively by collecting data on the
mission completion time and amount of robot error in performing the mission. This
section describes these results, first defining the mission performed by the robots.
briefly reviewing the related work in this area, and then discussing the results of
experiments with four control strategies that vary in the amount of global and local
information.

7.2.1 Task Description

The keep formation task requires a group of robots to stay in formation with one
another (i.e. remain aligned side to side) while the leader of the group follows a
prespecified route and while all robots avoid obstacles as they appear (see figure 7-1).
Each of these robots has the ability to sense the location of its neighboring robots
relative to itself (local knowledge).

The global goal of this task is twofold: first, the robots should reach their destina-
tion as quickly as possible, and, second, they must maintain the specified formation in
a manner that appears to a casual human observer to be human-driven, meaning that
the robots should not allow huge or "unnatural" (an admittedly subjective measure)
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A A

Figure 7-1: Four robots keeping formation side by side.

perturbations in the desired group formation1 . This subjective measure is quantified
by defining the notion of normalized cumulative formation error, which is calculated
as follows: at a given time t. the formation error, fet, is given by

fet = E di
i761eader

where di is the distance between the current position of robot. i and the proper for-
mation position of robot i, based on the leader's current location. The cumulative
formation error, cumrje is then given by:

t na ax

Cum_fe = E fet
t=O

for integral values of t, meaning that the formation error is sampled and accumulated
at discrete points in time up to tm,,, which is the mission completion time. Since this
cumulative formation error is dependent on the total time of mission completion, it
is divided by the total mission time to result in the normalized cumulative formation
error, which is used as a basis of comparison between the control strategies.

The robots in this mission, designed using a behavior-based approach, are pro-

'Of course, I am not requiring that the Turing test be passed by these robots. The point is not
to fool humans, but to display human-like strategies toward staying in formation.
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vided with competences to avoid obstacles, to follow a specified route, and to keep
in formation. In these experiments. I varied the design of the third competence -
KEEP-FORMATION - to determine the level of performance we are able to achieve
with different levels of local versus global control.

7.2.2 Related Work

Little related work has been done in the area of cooperative robots with the specific
aim of determining the tradeoffs between local and global control. Of course, as
referenced earlier, many researchers have built systems using local control alone which
have been shown to achieve the stated application. However, very rarely does this
work attempt to determine the limit of the usefulness of local control laws.

One paper of particular note to this selected keep formation case study, how-
ever, is the work done by Wang in [Wang, 1991]. In this paper, Wang considers the
problem of a small number of simulated robots remaining in formation. He studies
several simple navigation strategies based upon nearest neighbor tracking and devel-
ops analytical derivations of the various control strategies. The differences between
Wang's studies and those presented in this chapter are twofold: (1) Wang considers
continuous motions only, whereas this chapter examines navigation between discrete
waypoints, and (2) Wang defines the robot formations in terms of absolute x and y
distances only, whereas this chapter also includes an orientation constraint (that is, in
the version of the problem presented in this chapter, a robot must maintain the same
neighbors to its own left. and right, respectively; this constraint is not required by
Wang). The consequences of these differences are as follows: (1) continuous motions
imply that a robot's current motion trajectory completely defines where the robot
will be at the next instant, whereas a robot moving between discrete waypoints may
change course abruptly, and (2) lack of orientation constraints implies that similar ve-
locity profiles across robots are possible, whereas orientation constraints may require
some robots to accelerate or decelerate relative to other robots in order to maintain
formation. Determining which method of defining motions and formation constraints
is preferable depends upon the requirements of a given application.

7.2.3 Implementation

The simulation data and snapshots illustrated in this section were obtained using the
simulator described in chapter 2. The experiments varied in the route the robots
were instructed to follow, the character of the route (i.e., sharp versus smooth turns,
following a road or traveling through open terrain, etc.). the number of robots in
the team, the formation the robots were to maintain, and the presence of static or
dynamic obstacles in the paths of the robots. Typical experiments involved from
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Figure 7-2: Time and error results of 10 runs of each control strategy. (Asterisks
denote the mean values.)

1 to 14 robots instructed to follow a specified route while staying in a side-by-side
formation. Often, an additional team of robots simultaneously performed a similar
task along an intersecting route, requiring the robots in both teams to avoid dynamic
obstacles (other robots) as they maintained their formation.

Each of the control strategies described below was implemented and tested sep-
arately to determine the group behavior that resulted from each of the strategies.
These strategies were evaluated based on the quantitative measures of mission com-
pletion time and normiized cumulative formation error described earlier. To collect
this data, each experiment for each control strategy was run ten times. Figure 7-2
plots the results, which are discussed in the next subsections 2.

7.2.4 Strategy I: Using local control alone

At first glance, it would appear that KEEP-FORMATION could be achieved using
local control laws alone. Each robot could be assigned a leader and then use a simple
control law that directs it toward a prespecified offset and direction from its leading
robot. As the group leader moves forward along the path (which is known only to
the group leader), the other robots follow along to stay in formation. Indeed, in

2The variation in results for control strategies I and II is due to unpredictable interference among
robots when they stray significantly out of formation.
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Figure 7-3: Team behavior using Strategy I.

experiments involving relatively few robots traversing smooth routes in the absence
of obstacles, I found that this law would perform adequately well. However, a problem
arises if the group leader makes a sharp turn along the path, as illustrated in figure 7-
3. (In figures 7-3 through 7-6, the bold arrows, when present, indicate the intended
direction of travel of the robots, the thin lines show the paths already traversed by
the robots, and the leader's path goes from its starting location to the small triangle
directly in front of it, and then to the small triangle on the right.) In this snapshot of
the simulation, robot B is the overall leader, robots A and C are following robot B,
and robot D is following robot C. In following its leader, robot A seeks to always locate
itself a preset distance to the left of B, while robots C and D strive to be located the
same distance to the right of their respective leaders. In this figure, the group leader.
B, is making a right-hand turn. Since the followers are using strictly local information
in this case, they continue to follow the same rules as before, maintaining a specified
distance and offset from their respective leaders. Robot A performs satisfactorily.
aiming toward the location the appropriate distance to the left of B. However, robot
C finds itself well out of formation, and thus it turns around and aims toward a
location to the right of B. Now, however, we have a problem with robot D. It aims
as usual toward the right of C, but this position is out of formation with the rest,
of the group. Here we see that local control information is not sufficient to achieve
the desired global goals. Figure 7-2 shows that this strategy resulted in the worst
quantitative performance of all the control strategies studied.
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Figure 7-4: Team behavior using Strategy II.

7.2.5 Strategy II: Using local control augmented by a global
goal

An improvement on the situation provides the robots with knowledge of the global
goal of the group. Now, since the robots are aware that they should achieve a global
linear formation, they select their positions after robot B's right-hand turn based
on the global formation, while still remaining responsive to the local dynamics of
the robots adjacent to them. With this information, robots A and C aim toward the
same positions as in the previous case, but robot D now heads toward a more globally
appropriate location, as shown in figure 7-4. Unfortunately, these movements could
still be inappropriate if the leader is just avoiding an obstacle, rather than making a
turn along the path. In spite of this, it is clear that knowledge and use of the global
goal can yield improved group coordination. In figure 7-2 we see that this strategy
resulted in an average 10% reduction in mission completion time and an average 15%,
reduction in normalized formation error.

7.2.6 Strategy III: Using local control augmented by a
global goal and partial global information

Yet another improvement can be attained by providing the team with partial global
knowledge about the path the group is to take. In the previous two cases, the right-
hand turn by robot B prompted the other robots to change their alignments. However,
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Figure 7-5: Team behavior using Strategy III.

B could have just been avoiding an obstacle, and thus the other robots should have
continued along their present path without realignments. Without knowing anything
about the route that the leader is following, the robots cannot always react properly
to B's actions. Now, however, at the time of robot B's right-hand turn, let us assume
that all the robots are told that the group should be headed toward waypoint X. as
shown in figure 7-5. With this partial global information, robots C and D can avoid
the needless backtracking present in the previous case, and instead aim forward along
the route toward the upcoming waypoint, as shown in figure 7-5, moderating their
speeds as required to remain in alignment with their neighbors. In this manner, the
robots achieve a much more moie efficient cooperation, in which we attain average
improvements of 38% in time and 22% in error over local control alone, and 32X and
9% average time and error improvements, respectively, over strategy II.

7.2.7 Strategy IV: Using local control augmented by a global
goal and more complete global information

Yet another improvement can be achieved with the use of additional global informa-
tion. Global knowledge of the route the group leader is tracking allows the robot
followers to accurately predict future actions of the team members. In this exam-
ple, knowledge of the global path being followed allows the robots to anticipate the
right-hand turn, thus enabling the robots to the right of the leader to stop earlier in
preparation for this turn, as shown in figure 7-6. With such predictions, each robot
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Figure 7-6: Team behavior using Strategy IV.

can modify its actions to better maintain the formation. Using this strategy, we find
an additional average error improvement of 12% over strategy III, which is an overall
average improvement of 32% in normalized cumulative formation error over local con-
trol alone. However, we see little improvement in the mission completion time over
strategy 1II, which is due to the fact that the robots making an error in formation in
strategy III have time to correct their errors before the leader reaches the goal, thus
not impacting the overall mission completion time.

7.3 The Proper Balance

Having examined the results of this case study, let us generalize these results, to
the extent possible, to derive some general principles for the design of cooperative
control laws. Selecting the proper balance between the use of local and global control
laws is not an easy task, and varies from application to application. Of central
importance is determining the acceptable level of cooperation and performance of
the autonomous robot team in a particular application. Some applications may be
considered successfully accomplished if the team finishes the task at all, regardless
of how they do it or how long it takes. Several questions arise when considering the
design of cooperative control laws. What are the tradeoffs between global versus local
control? Will global and local information conflict, and, if so, how does one arbitrate
between them? These issues and others are discussed in the following subsections.
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7.3.1 Tradeoffs Between Global and Local Control

Assuming the availability of global goals and/or global knowledge which cain be used
by the cooperative team, the designer must decide whether to incorporate the use of
this global information into the team. or to approach the problem with more local
control. In doing this, the designer must weigh the costs of using global information
with those of doing without. Several questions must, be addressed. First. how static
is the global knowledge? The knowledge could be known and fixed at the start of the
task, thus making it an excellent, candidate for use in a global control law. In general.
the more static the global knowledge is, the more practical its use by a global control
law.

An additional issue concerns how difficult it is to approximate global knowledge
by comparing observations of a robot's actions with a model of that robot's behavior.
This type of approximation can be quite challenging, depending upon the complexity
of the autonomous robots and the environment. When possible, behavioral observa-
tion is more robust and dynamic than the use of global knowledge that may change
unexpectedly. As global knowledge becomes more unreliable, a robot team must in-
crease its dependence on behavioral observation and interpretation. Good results with
behavior observation and interpretation should be expected particularly for teams of
robots possessing a fixed set of discernible actions. One of the primary difficulties
with behavior observation, however, lies in the limited ability of robots to sense the
current actions of other robots. In cases where the sensing capabilities are not suffi-
ciently extensive, the team can utilize communication to inform other robots of their
current actions.

Other issues that must be addressed include: How badly will the performance
degrade without the use of global knowledge? How difficult is it to use global knowl-
edge? How costly is it to violate the global goals? How accessible is the global
knowledge? How much local information can be sensed? Answers to these questions
must be application-dependent, and considered in light of the capabilities of the spe-
cific robots to be used, the environment they will be operating in, and the scope of
the application. In general, the more unknown the global information is, the more
dependence a team must have on local control, perhaps combined with approxima-
tions to global knowledge based on behavioral and environmental observation and
interpretation.

7.3.2 Conflicts Between Global and Local Control Informa-
tion

A combination of local and global control in the same robot may lead to conflicts if the
control laws are designed to compete with one another by having the global control



7.4. DESIGNING CONTROL LAWUS: SMMA R) A ND ('ONCLU"SIONS 191

laws utilize strictly global information, while the local control laws utilize strictly local
information. A better way to design the system is to view the global information as
providing general guidance for the longer-term actions of a robot, whereas the local
information indicates the more short-term, reactive actions the robot should take
within the scope of the longer-term goals. This can often be achieved by combining the
use of local and global information into a composite control law that more intelligently
interprets the local information in the context. of the global knowledge.

Problems may still arise if a robot using global knowledge is also trying to react
appropriately to a robot that is not using global knowledge. In this case, the designer
must provide the robots with the ability to arbitrate between certain aspects of global
or local information when the need arises. Perhaps the best way to achieve the
interaction of the two types of knowledge is by using local control information to
ground global knowledge in the current situation. In this manner, the robots are able
to remain focused on the overall goal of their group while reacting to the dynamics
of their present contexts.

7.4 Designing Control Laws: Summary and Con-
clusions

The design of the control laws governing the behavior of individual robots is crucial
for the successful development of cooperative robot teams. These control laws may
utilize a combination of local and/or global knowledge to achieve the resulting group
behavior. A key difficulty in this development is deciding the proper balance between
local and global control to achieve the desired emergent group behavior. This chap-
ter has addressed this issue by presenting some general guidelines and principles for
determining the appropriate level of global versus local control, developed from quan-
titative studies of the keep formation case study. To summarize, the basic general
principles and guidelines proposed in this chapter are as follows:

* Global goals: If the global goals are known at design-time and all the informa-
tion required for a robot to act consistently with the global goals can be sensed
locally by the robot at run-time, these goals can be designed into the robots.

* Global knowledge: The more static, reliable, completely known, and easy-to-use
the global knowledge is, the more practical its use in a global control law. The
more unknown the global information, the more dependence the team will have
on local control, perhaps combined act: n recognition to approximate global
knowledge.
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"* Action recognition: Action recognition may provide a suitable approximation
to global knowledge, and can thus be utilized to improve group cooperation.
This method should be particularly useful when the robots possess a fixed set
of discernible or communicable actions.

"* Local knowledge: In many applications, particularly those in which accomplish-
ing the task is more important than hou, the robots accomplish the task, local
control may provide a suitable approximation to the optimal group behavior,
thus eliminating the need for the use of global knowledge.

"* Proper balance: Global knowledge should be used to provide general guidance
for the longer-term actions of a robot, whereas local knowledge indicates the
more short-term, reactive actions the robot should perform within the scope of
the longer-term goals. This leads to the following basic principle:

Local control information should be used to ground global knou,ledge
in the current situation. This allows the robots to remain focused on
the overall goals of their group while reacting to the dynamics of their
current situations.



Chapter 8

Related Cooperative Mobile
Robot Work

In recent years, interest in cooperative mobile robot control has grown significantly.
Most major artificial intelligence and robotics conferences today have several sessions
dealing with multi-robot systems or multi-agent systems. In this chapter, I review
this work and relate it to the research I present in this report. As I do this, it is quite
interesting to note the analogy between two major directions in current cooperative
mobile robot research and a classification of animal societies proposed by Niko Tin-
bergen in the 1950's. Thus, I first describe this analogy, and then review the existing
work in each of two broad classes of cooperative mobile robotics research.

8.1 Analogy: Animal Societies vs. Cooperative
Robotics

The behavioristic approach to autonomous robot control that has gained popularity
in recent years has its roots in the observations of animal behavior. Animals, partic-
ularly the lower animals, are existence proofs that interesting results can be achieved
without the need for a complex, human-level architecture. Many animals appear to
be "hard-wired" for certain behaviors, producing very stereotypical reactions to par-
ticular stimuli. For instance, a robin begins defending its territory when it sees the
red breast of another robin, or even a bunch of red feathers [Etkin, 1964]. A pregnant
Three-spined Stickleback fish approaches a male Stickleback with a red belly, or even
a crude model of a Stickleback, as long as it is painted red underneath [Tinbergen,
19531. A male grayling butterfly flies up to mate rather large, dark, close, dancing
objects, which could include not only female graylings, but also birds, falling leaves,
and shadows [Tinbergen, 19651.

193
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Applying animal observations to the realm of autonomous robotics, interesting and
seemingly intelligent activities can be obtained by layering behaviors which react to
stimuli from the world according to the robot's current, internal state [Brooks, 19861.
Rather than decomposing the robot control system based on information processing
functions, the behavioristic approach decomposes the control into task achieving be-
haviors, such as obstacle avoidance, exploration, and map building. The result has
been a series of autonomous robots that can survive in a dyna.mic world, avoiding
obstacles, exploring the environment, following walls, building maps, climbing over
uneven terrain, and so forth [Brooks, 1990a].

But this same approach - the observation of animal behavior - that has been
used for inspiration in the development of individual robots is just as easily used to
gain insight into the creation of groups of robots that cooperate toward attaining
some goal. By learning how various species of animals function as groups, we can
develop ideas for building a cooperating team of autonomous mobile robots.

8.1.1 Broad Classification of Animal Societies

Since there are so many varieties of social behavior in the animal kingdom, a classi-
fication of animal societies is useful. One such classification, proposed by Tinbergen
[Tinbergen, 1953], is of particular interest for current robotics research in cooperative
systems, as it parallels two possible approaches to cooperating mobile robot devel-
opment. According to Tinbergen, animal societies can be grouped into two broad
categories: those that differentiate, and those that integrate.

Societies that differentiate are realized in a dramatic way in the social insect
colonies [Wilson, 1971]. These colonies arise due to an innate differentiation of blood
relatives that creates a strict division of work and a system of social interactions
among the members. Members are formed within the group according to the needs
of the society. In this case, the individual exists for the good of the society, and is
totally dependent upon the society for its existence. As a group, accomplishments
are made that are impossible to achieve except as a whole.

On the other hand, societies that integrate depend upon the attraction of individ-
ual, independent animals to each other. Such groups do not consist of blood relatives
that "stay together", but instead consist of individuals of the same species that "come
together" by integrating ways of behavior [Portmann, 19611. These individuals are
driven by a selfish motivation which leads them to seek group life because it is in
their own best interests. Interesting examples of this type of society are wolves and
the breeding colonies of many species of birds, in which hundreds or even thousands
of birds congregate to find nesting partners. Such birds do not come together due to
any blood relationship; instead, the individuals forming this type of society thrive on
the support provided by the group. Rather than the individual existing for the good
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of the society, we find that the society exists for the good of the individual.

8.1.2 Parallels in Cooperative Robotics

In analyzing the research underway in cooperative autonomous mobile robots, a par-
allel can be drawn with the classifications of animal societies discussed above. A large
body of work in robotics involves the study of emergent cooperation in colonies, or
swarms, of robots - an approach comparable to differentiating animal societies. This
research emphasizes the use of large numbers of identical robots that individually have
very little capability, but when combined with others can generate seemingly intelli-
gent cooperative behavior. Cooperation is achieved as a side-effect of the individual
robot behaviors.

A second approach parallels the integrative societies in the animal kingdom. This
research aims to achieve higher-level, "intentional"1 cooperation amongst robots.
Rather than beginning with robots having very low-level behaviors, individual robots
that have a higher degree of "intelligence" and capabilities are combined to achieve
purposeful cooperation. The goal is to use robots that can accomplish meaningful
tasks individually, and yet can be combined with other robots with additional skills
to complement one another in solving tasks that no single robot can perform alone.
To be purely analogous to the integrative animal societies, robots in this type of
cooperation would have individual, selfish, motivations which lead them to seek co-
operation [McFarland, 19911. Such cooperation would be sought because it is in the
best interests of each robot to do so to achieve its mission. Of course, the possession
of a selfish motivation to cooperate does not necessarily imply consciousness on the
part of the robot. It is doubtful that we would attribute consciousness to all the
integrative societies in the animal kingdom; thus, some mechanism must exist for
achieving this cooperation without the need for higher-level cognition.

The type of approach one should use for the cooperative robot solution is de-
pendent upon the applications envisioned for the robot team. The differentiating
cooperation approach is useful for tasks requiring numerous repetitions of the same
activity over a relatively large area (relative to the robot size), such as waxing a floor,
agricultural harvesting, cleaning barnacles off of ships, collecting rock samples on a
distant planet, and so forth. Such applications would require the availability of an
appropriate number of robots to effectively cover the work area while continuing to
maintain the critical distance separation.

1I place the term inientional in quotes because I do not mean to imply that these robots have the
power to choose to cooperate. Rather, this term reflects the philosophy of the human designer of the
robots, who builds the control architecture so that robots explicitly communicate and/or coordinate
actions with their teammates.
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On the other hand, the intentional cooperation approach would be required in
applications requiring several distinct tasks to be performed, perhaps in synchrony
with one another. Throwing more robots at such problems would be useless, since
the individual tasks to be performed cannot be broken into smaller, independent
subtasks. Examples of this type of application include automated manufacturing.
industrial/household maintenance, search and rescue, and security. surveillance, or
reconnaissance tasks,

Of course, there is overlap in the relevance of these approaches to various appli-
cations, and in some instances the differences are a matter of degree. For instance, if
large numbers of robots are too expensive or are not available to be applied to, say,
planet exploration, then more purposive cooperation is required to achieve the goal
of the mission. Combinations of the approaches are also possible by using intention-
ally cooperating robots to guide the activities of smaller groups of swarm robots in a
coordinated way.

The research presented in this report addresses the development of autonomous
robot teams that parallel the integrative type of social animals. This type of coop-
eration requires achieving coordinated and coherent solutions to problems involving
a few robots, each of which is able to perform meaningful tasks alone, but which
requires the presence of other agents to fully complete its mission. The agents oper-
ate in dynamic, unstructured environments, and must respond appropriately to their
sensory feedback, the actions of other agents, and the priorities of the tasks in the
mission, adapting their actiops as necessary as these inputs change.

8.2 Approaches to Multi-Robot Cooperative Con-
trol

In this section, I review the previous work in the cooperative control of teams of
mobile robots, grouping the work into the two broad approaches to mobile robotics
introduced in the last section.

8.2.1 "Swarm" Cooperation

The predominant body of research in cooperative mobile robotics deals with the study
of large numbers (often called swarms) of homogeneous robots. As I noted earlier, this
approach to robotic cooperation is useful for non-time-critical applications involving
numerous repetitions of the same activity over a relatively large area, such as clean-
ing a parking lot or collecting rock samples on Mars. The approach to cooperative
control taken in these systems is derived from the fields of neurobiology, ethology,
psychophysics, and sociology, and involves the interaction of a number of simple rules
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of control within the individual robot. These behavior-based approaches eschew the
use of world models and the distinct separation of the system into perceptual, central
control, and actuation systems, and instead rely extensively on interactions with the
real world to produce the desired global results. This distributed approach has the ad-
vantages of removing the bottleneck present in centralized controllers, reducing team
susceptibility to individual robot failures. and increasing the reactivity of the team to
a dynamic environment, although at the expense of increased difficulty in maintaining
global coherence. The difficult problem addressed in these systems is predicting the
global behavior of the collective from the design of the control laws in the individual
agent. Thus, a typical methodology used in many of these research projects involves
first hypothesizing a possible local control law (or laws) that may allow the collection
of robots to solve a given problem, and then studying the resulting group behavior
using either simulated or physical mobile robots. Such approaches usually rely on
mathematical convergence results (such as the random walk theorem (Chung, 19741)
that indicate the desired outcome over a sufficiently long period of time.

A number of papers describe distributed algorithms for harvesting, collecting,
and foraging tasks, as well as other group behaviors often found in social animal
colonies such as flocking. In [Deneubourg et al., 19901, Deneubourg et al. present
simulation studies of several strategies for the collection and transport of objects in
which the cooperative behavior emerges by either explicit or implicit communica-
tion. In [Deneubourg et al., 1990], Deneubourg et al. describe simulation results of a
distributed sorting algorithm. Theraulaz et al. [Theraulaz et al., 1990] extract coop-
erative control strategies, including foraging strategies, from a study of Polistes wasp
colonies. Steels, in [Steels, 1990], presents simulation studies of the use of a several
dynamical systems (partially random movement, a gradient field, and a dissipative
structure) to achieve emergent functionality. This work is applied to the problem of
collecting rock samples on a distant planet. Drogoul and Ferber [Drogoul and Ferber,
1992] describe simulation studies of foraging and chain-making robots. In [Mataric,
1992a], Mataric describes the results of implementing group behaviors such as dis-
persion, aggregation, and flocking on a group of up to 20 physical robots. Beni and
Wang [Beni and Wang, 19901 describe methods of generating arbitrary patterns in
cyclic cellular robotics.

Other swarm cooperation work addresses similar tasks while emphasizing the en-
gineering advantages of this type of cooperation. In [Miller, 1990], Miller conjectures
on ways numerous small robots can be applied to tasks in planetary exploration,
such as site surveys, instrument deployment, and construction and mining. Brooks
et al. [Brooks et al., 1990] speculate on control strategies for teams of 20 soil-moving
robots deployed to a lunar base. In [Kube and Zhang, 1992], Kube and Zhang present
the results of implementing an emergent control strategy on a group of five physical
robots performing the task of locating and pushing a brightly lit box. Stilwell and
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Bay [Stilwell and Bay, 1993] present a method for controlling a swarm of robots using
local force sensors to solve the problem of the collective transport of a palletized load.
In [Fukuda 0 al., 1988] and many related papers, Fukuda and others describe the
concept of CEBOT - a collection of robots which dynamically constructs various
physical formations based upon the current task.

The primary difference between these approaches and the problem addressed in
this report is that the above approaches are designed strictly for homogeneous robot
teams, in which each robot has the same capabilities. Additionally, issues of efficiency
are largely ignored. However, in heterogeneous robot, teams. not all tasks can be
performed by all team members, and even if more than one robot can perform a
given task, they may perform that task quite differently. Thus the proper mapping of
subtasks to robots is dependent upon the capabilities and performance of each robot
team member. This additional constraint brings many complications to a workable
architecture for robot cooperation, and must be addressed explicitly to achieve the
desirable level of cooperation.

8.2.2 "Intentional" Cooperation

Although the swarm cooperation approach is useful for many type.- of real-world tasks,
many other real-world tasks require a more directed type of cooperation, perhaps due
to time or efficiency constraints that are placed on the mission. Furthermore, this
second type of mobile robotic mission usually requires that several distinct tasks be
performed. These missions thus usually require a much smaller number of possibly
heterogeneous mobile robots involved in more purposeful cooperation. Key issues in
these systems include robustly determining which robot should perform which task
so as to maximize the efficiency of the team and ensuring the proper coordination
among team members to allow them to successfully complete their mission.

Two bodies of previous research are particularly applicable to this type of coopera-
tion. First, several researchers have directly addressed this cooperative robot problem
by developing control algorithms and implementing them on physical robots, or at
least on simulations of physical robots that make reasonable assumptions about the
capabilities of real mobile robots. The second, significantly larger, body of research
comes from the Distributed Artificial Intelligence (DAI) community, which has pro-
duced a great deal of work addressing this type of "intentional" cooperation among
more generic agents. These agents are typically software systems running as separate
processes; in some models, these agents share memory resources, while in others, each
agent has only local memory.

In the following two subsections, I review the work from these two communities
as applied to "intentional" cooperation between mobile robots.

.. . .". . .
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Mobile Robot Research

Nearly all of the existing work on heterogeneous physical robots uses a traditional art i-
ficial intelligence approach, which breaks the robot controller into modules for sensing.
world modeling, planning, and acting (hence, the sqnst-mod1-pla1n-act paradigm).
rather than the functional decomposition of behavior-based approaches. Noreils [Nor-
eils, 1993] describes one such sf-nsf-model-plan-act control architecture which includes
three layers of control: the planner level, which manages coordinated protocols. de-
composes tasks into smaller subunits, and assigns the subtasks to a network of robots;
the control level, which organizes and executes a robot's tasks; and the functional
level, which provides controlled reactivity. He reports on the implementation of this
architecture on two physical mobile robots performing convoying and box pushing.
In both of these examples, one of the robots acts as a leader, and the other acts as a
follower.

Caloud et al. [Caloud et al., 19901 describe another s(.nse-model-plan-act archi-
tecture which includes a task planner, a task allocator, a motion planner, and an
execution monitor. Each robot obtains goals to achieve either based on its own cur-
rent situation, or via a request by another team member. They use Petri Nets for
interpretation of the plan decomposition and execution monitoring. In this paper
they report on plans to implement their architecture on three physical robots.

In [Asama et al., 19921 and elsewhere, Asama et al. describe their decentral-
ized robot system called ACTRESS, addressing the issues of communication, task
assignment, and path planning among heterogeneous robotic agents. Their approach
revolves primarily around a negotiation framework which allows robots to recruit help
when needed. They have demonstrated their architecture on mobile robots perform-
ing a box pushing task.

Wang [Wang, 1993] addresses a similar issue to that addressed in this report -
namely, dynamic, distributed task allocation when more than one robot can perform
a given task. He proposes the use of several distributed mutual exclusion algorithms
that use a "sign-board" for inter-robot communication. These algorithms are used
to solve problems including distributed leader finding, the N-way intersection prob-
lem, and robot ordering. However, this paper does not address issues of dynamic
reallocation due to robot failure and efficiency issues due to robot heterogeneity.

Cohen et al. [Cohen et al., 1990a] propose a hierarchical subdivision of authority to
address the problem of cooperative fire-fighting. They describe their Phoenix system,
which includes a generic simulation environment and a real-time, adaptive planner.
The main controller in this architecture is called the Fireboss, which maintains a.
global view of the environment, forms global plans, and sends instructions to agents
to activate their own local planning.

Ohko et al. [Ohko et al., 1993] describe a learning system, called LEMMING,
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which learns knowledge quite similar to that learned in L-ALLIANCE. In their system.
however, this knowledge is used by a case-based reasoner for reducing the commu-
nication flow between distributed agents. These distributed agents use the Contract
Net Protocol [Smith, 1980] to negotiate the allocation of tasks. With LEMMING. tihe
agents can often use point-to-point communication rather than broadcast communi-
cation to recruit help directly from those agents known to have the capabilities to
perform a given task, thus reducing the overall communication traffic. They present
results from a simulation application involving the movement of objects from one
location to another by a team of distributed agents.

However, although the need for fault tolerance is noted in these architectures. they
typically either make no serious effort at achieving fault tolerant, adaptive control or
they assume the presence of unrealistic "black boxes" that continually monitor the
environment and provide recovery strategies (usually involving unspecified replanning
mechanisms) for handling various types of unexpected events. Thus, in actuality, if
one or more of the robots or the communication system fails under these approaches,
the entire team is subject to catastrophic failure. Experience with physical mobile
robots has shown, however, that robot failure is very common, not only due to the
complexity of the robots themselves, but also due to the complexity of the environ-
ment in which these robots must be able to operate. Thus, control architectures must
explicitly address the dynamic nature of the cooperative team and its environment
to be truly useful in real-world applications. Indeed, the approach to cooperative
control developed in this report has been designed specifically with the view toward
achieving fault tolerance and adaptivity.

Additionally, as I have noted, these existing approaches break the problem into
a traditional Al sense-model-plan-act decomposition rather than the functional de-
composition used in behavior-based approaches. The traditional approach has likely
been favored because it presents a clean subdivision between the job planning, task
decomposition, and task allocation portions of the mission to be accomplished -
a segmentation that may, at first, appear to simplify the cooperative team design.
However, the problems with applying these traditional approaches to physical robot
teams are the same problems that currently plague these approaches when they are
applied to individual situated robots. As argued by Brooks in [Brooks, 1991b] and
elsewhere, approaches using a sense-model-plan-act framework have been unable to
deliver real-time performance in a dynamic world because of their failure to adequately
address the situatedness and embodiment of physical robots. Thus, a behavior-based
approach to cooperation was utilized in ALLIANCE to increase the robustness and
adaptivity of the cooperative team.
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Distributed Artificial Intelligence Research

Much theoretical work has been accomplished for intentional agent control hb" the
Distributed Artificial Intelligence (DAI) communit y ([Bond and Gasser. 1988] con-
tains many examples). In most of this work, the issue of task allocation has been the
driving influence that dictates the design of the architecture for cooperation. since
the selected approach to task allocation invariably restricts the potential solutions to
other issues of cooperation, such as conflict resolution.

Typically, the DAI approaches use a distributed, negotiation-based mechanism
to determine the allocation of tasks to agents. One popular negotiation protoco"
is the contract-net protocol [Davis and Smith. 1983, Smith and Davis. 1981]; other
negotiation schemes are described in [Durfee and Montgomery. 1990, Kreifelts and
von Martial, 1990, Rosenschein and Genesereth, 1985, Zlotkin and Rosenschein, 1990].
Under these negotiation schemes, no centralized agent, has 5ull control over which tasks
individual team members should perform. Instead. many agents know which subtasks
are required for various portions of the mission to be performed, along witl, -he skills
required to achieve those subtasks. These agents then broadcast a request tor bids to
perform these subtasks, which other agents may respond to if they are available and
want to perform these tasks. The broadcasting agent then selects an agent from those
that respond and awards the task to the winning agent, who then goes on to perform
that task, recruiting yet other agents to help if required. We saw above that these
types of negotiation schemes are also popular for work applied directly to physical
mobile robots.

However, although DAI work has demonstrated success in a number of domains
(e.g. distributed vehicle monitoring [Lesser and Corkiil, 1983] and distributed air
traffic control [Cammarata et al., 1983]), the proposed solutions have rarely been
demonstrated as directly applicable to situated agent (i.e. robotic) teams, which have
to live in, and react to, a dynamic and uncertain environment using noisy sensors and
effectors, and a limited bandwidth, noisy communication mechanism. They typically
rely on unrealistic "black boxes" to provide higl -level, perfect sensing and action
capabilities. Furthermore, as with the approaches of the previous subsection, these
DAI approaches typically ignore o; only give brief treatment to the issues of robot
performance of those tasks after they have been allocated. Such approaches usu-
ally assume the robots will eventually accomplish the task they have been assigned,
or that some external monitoi will provide information to the robots on dynamic
changes in the environment or in robot performance. However, to realistically design
a cooperative approach to robotics, we must include mechanisms within the software
control of each robot that allow the team members to recover from dynamic changes
in their environment or in the robot team. Thus, it is unlikely that the current DAI
approaches can successfully address the unique aspects present in situated systems.
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Chapter 9

Summary and Conclusions

9.1 Summary of Contributions

This report makes several contributions to methods of fault tolerant, adaptive coop-
erative control and to our understanding of heterogeneous mobile robot cooperation.
Foremost is the development of ALLIANCE - a novel, fault tolerant cooperative
architecture for small- to medium-sized heterogeneous mobile robot teams applied to
missions involving loosely-coupled, largely independent tasks. This architecture has
been shown to have the following characteristics:

"* Fully distributed at both the individual robot level and at the team level.

"* Applicable to robot teams having any degree of heterogeneity.

"* Uses no negotiation or two-way conversations.

"* Recovers from failures in individual robots or in the communication system.

"* Allows new robots to be added to the team at any time.

"* Allows adaptive action selection in dynamic environments.

"* Eliminates replication of effort when communication is available.

"* Provably terminates for a large class of applications.

"* Scales easily to large missions.

The next major contribution is an extension to ALLIANCE, called L-ALLIANCE,
that preserves the fault tolerant characteristics of ALLIANCE while adding efficiency
mechanisms. These mechanisms were shown to improve robot team performance by

203
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incorporating learned knowledge into a dynamic parameter update mechanism. This
extension to ALLIANCE results in the following advantages:

* Improves efficiency for cooperative teams applied to missions composed of in-
dependent tasks.

* Eliminates the need for human parameter adjustments.

* Allows human designer to custom-design robot teams for specific missions.

* Requires no advance knowledge of the capabilities of team members.

* Allows robot team members to adapt their performance over time to changes
in the environment or in the team member capabilities.

ALLIANCE and L-ALLIANCE have been implemented on both simulated and
physical robot teams performing a variety of missions These demonstrations val-
idated the architecture and allowed me to study a n ,mber of important issues in
cooperative control. The missions to which this arL:. lecture has been applied and
which were described in this report, are:

* Hazardous waste cleanup mission

* Box pushing demonstration

* Janitorial service mission

• Bounding overwatch mission

0 Numerous generic missions

I am not aware of any other cooperative control architecture that has exhibited
the combination of fault tolerance, reliability, adaptivity, and efficiency possible with
ALLIANCE and L-ALLIANCE, and which has been successfully demonstrated on
physical mobile robot teams.

9.2 Fault Tolerant Cooperative Control

A common question I am asked concerning cooperative robotics research is: "Why
work on multiple robots when we can't even make one robot work?". Anyone who
has worked on physical robots knows the blood, sweat, and tears that are are required
to accomplish what, to an outsider, may seem to be trivial. I cannot count the hours
I spent trying to get a robot to use infrared sensors with a 12-inch range to perform
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simple wall-following without losing the wall, getting the robot to find a puck (spill
object). pick it. up, carry it to some location, and drop it, without dropping the puck
too early or squeezing the puck so hard that it breaks the gripper; preventing the
robot from initializing its gripper in an "up" position which prevents it from actually
reaching the pucks on the floor; or getting the (legged) robot to back away from an
obstacle without "marching in place" first. If the IRs were working, then the gear
train would break. If the radio was working, then the gripper motors would break. If
the gripper motors worked, then the break beam between them would fail. Perhaps
the break beam and the gripper motors would work, but the touch sensor between the
fingers would break. And, just as you get everything working, the battery supply runs
out, se you have to stop for 30 minutes to recharge everything. The robot then loses
its program, so you have to redownload it, but the robot's microprocessor refuses to
talk to the Macintosh via the serial port. On and on the problems go, not just for our
robots, but for nearly all mobile robots in existence today. Multiply these problems
across every robot on the team, and you are asking for some major headaches.

Or are you? The beauty of the ALLIANCE and L-ALLIANCE architectures is
that they allow error-prone robots operating in a dynamic world to overcome their
individual failures as a group and succeed at their mission through the efficient use
of redundancy. If one robot fails at a task, some other robot is likely to be able to
accomplish that task instead (although possibly at a reduced level of efficiency). Addi-
tionally, a robot which may have a faulty sensor or a faulty effector preventing it from
succeeding at some of its tasks still has the ability, through L-ALLIANCE, of execut-
ing those tasks which it is still able to perform. ALLIANCE and L-ALLIANCE also
allow "spare" robots to monitor the team from an out-of-the-way location, yet join
in easily when made necessary by robot failures or a dynamic environment. Further-
more, the ability of heterogeneous robots to work together allows systems designers
to distribute the capabilities required by the mission across a number of robots, thus
reducing the complexity of any individual robot and reducing the likelihood of mission
failure. Even when all robots are working properly, L-ALLIANCE provides mecha-
nisms allowing the robots to dynamically select their actions so that they efficiently
accomplish their mission.

My experiments with the physical robots demonstrated the fault tolerant nature of
ALLIANCE and L-ALLIANCE countless times, in both the hazardous waste cleanup
mission and in the box pushing demonstration. Although I usually would intentionally
inflict a robot with errors (e.g. by covering up its IRs or turning the robot off) to
test the architectures, on numerous occasions spontaneous robot failures would occur
which caused the robots to dynamically reallocate their tasks to recover from these
"unplanned" failures. For example, in the case of the box pushing demonstration,
I was occasionally distracted from the robots, only to look back and find that one
robot was dutifully carrying out the entire mission on its own in response to a failure
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of one of the second robot's processor boards which rendered that robot temporarily
useless.

This is not to say that I do not expect reliable mobile robots to ever be built.
Two recent theses out of the MIT Mobot Laboratory contribute significantly to the
goal of building reliable mobile robots. Horswill [Horswill, 199:3] built a robot. Polly.
which has operated reliably for hundreds of hours, giving tours of the seventh floor of
the MIT Artificial Intelligence Laboratory. Ferrell [Ferrell, 199:3] built a distributed,
fault tolerant system that allows a six-legged robot. Hannibal, to detect and gracefully
compensate for failures in its own hardware components. Nevertheless, these robots
operate in the relative friendliness of a research laboratory. When we attempt to use
physical robots in environments as dynamic as the Chernobyl situation described in
chapter 1, the issues of fault tolerant control become compounded not only by the
reliability of the individual robot, but also by the dangerous environment in which the
robots operate. The robustness issues of cooperative robot teams will therefore not
go away once we have built individually fault tolerant robots; these robots must still
be able to operate in challenging or dangerous working environments. Thus, even as
individual robots become more reliable, fault tolerant cooperative architectures such
as ALLIANCE and L-ALLIANCE will continue to contribute to the design of robust,
reliable, flexible, and coherent teams of heterogeneous mobile robots.

9.3 Future Work

Of course, ALLIANCE does have its limitations. Chief among these limitations is
the restriction of the cooperative teams to missions involving loosely coupled subtasks
whose interdependencies at most involve ordering constraints that are known at design
time. Although I have demonstrated a number of quite different types of cooperative
robot missions that fall >lto this category, I have not attempted a disciplined, formal
description of the types of ,roblems that can and cannot be formulated as ALLIANCE
problems. The types of cooperative robot applications that immediately come to mind
as difficult for ALLIANCE are cooperative assembly or construction tasks that are
typically solved (in traditional Al systems) using planners. Indeed, these types of
missions may actually require planning systems. However, most current research in
heterogeneous cooperative mobile robotics which is actually implernented on physical
robots includes the use of general planners to solve fairly straight-forward coordination
and cooperation tasks. It is not at all clear that such elaborate planning systems are
needed for the majority of applications, or extensions to those applications, in which
they are actually used. The problem is that such planning systems use up valuable
computation time deciding what a robot should do next, when in fact much simpler
approaches could solve the problem and allow the robot to use its computational
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resources to deal with the dynamic nature of its environment, and its teammates.
Horswill addresses a similar issue extensively in his thesis [Horswill, 1993], writing
that "if the vast majority of actual instances of a problem which are encountered by
an agent in its daily life are of one or another very simple variety then the agent may
thrive by using qiLnple "hacks" when possible and saving its cognitive resources for
the truly hard instances." Thus, an interesting area of future work is to determine
the extent to which more tightly coupled tasks can be incorporated into ALLIANCE.
and determining any extleiisons necessary to ALLIANCE to allow foi more tightly
constrained missions. In a related matter, the efficiency improvements I investigated
in L-ALLIANCE were nade with the assumption of strictly independent tasks with no
ordering constraints. An area of future work, then, is to study and develop efficiency
improvements in L-ALLIANCE for missions which do involve ordering constraints.

In chapter 4. I studied the performance of the distributed L-ALLIANCE efficiency
strategy by varying a number of factors (the robot team size, the mission size, the
level of task coverage, the degree of heterogeneity of the team, and the degree to
which the Progress When Working condition (see section 3.7.2) holds) and then com-
paring the results to the optimal solution for those problems in which the optimum
could actually be computed. However, I did not attempt to derive analytical re-
sults of the best-case, worst-case, and average-case performance of the distributed
L-ALLIANCE control strategy. Thus. an additional area of future work is to try to
prove performance bounds on the approximation to the optimal solution, especially
for applications involving the possibility of robot failures.

A final interesting, and yet very challenging, area of future work is in the area
of action recognition. Supplying robots using the ALLIANCE architecture with the
ability to passively interpret and evaluate the actions of its teammates would further
contribute to the goals of this architecture, and would largely eliminate the need for
the broadcast communication mechanism now utilized in ALLIANCE. As noted in
chapter 5, this is a very difficult problem, and yet serves a highly important function
for achieving fault tolerant, yet efficient, cooperative control.
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Appendix A

Formal Model of ALLIANCE

The formal definition of the motivational behaviors - the primary mechanism for
action selection in ALLIANCE - is provided below. Refer to chapter 3 for a full
explanation of this model. Chapter 4 describes the extension to ALLIANCE, called
L-ALLIANCE, that allows the robots to learn the proper settings of the parameters
in this model based on experience.

Recall from chapter 3 that the behavior sets possessed by robot ri in ALLIANCE
are given by the set Ai = {ail,ai2 ,...}. Since different robots may have different
ways of performing the same task, we need a way of referring to the task a robot is
working on when it activates a behavior set. Thus, I define the set of n. functions
{hl(alk), h2(a 2k),..., hn(ank)}, where hi(aik) returns the task of the mission that robot
ri is working on when it activates behavior set aik.

Given:

0 = Threshold of activity of a behavior set

Five sources of input affect the motivation to perform a particular behavior set. These
inputs are defined as:

Sensory feedback:
1 if the sensory feedback in robot ri at time t

sensory.feedbackii(t) = indicates that behavior set aij is applicable
0 otherwise

Inter-robot communication:

pi = Rate of messages per unit time that robot ri sends concerning
its current activity
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I if robot ri has received message from robot rIk

concerning task hi(aij) in the time span
coarrccived(i , k, j, t, t•) I (I,, tI2), where tI < t2

0 otherwise

Ti = Maximum time robot ri allows to pass without hearing from a particular
robot before assuming that that robot has ceased to function

Suppression from active behavior sets:

0 if another behavior set aik is active. k 6 J, on
activity-suppressionij(t) = robot ri at time t

1 otherwise

Robot impatience:

Oij (k, t) = Time during which robot ri is willing to allow robot rk's
communication message to affect the motivation of behavior set agj

,&slowij(k, t) = Rate of impatience of robot ri concerning behavior set aij after
discovering robot rk performing task hi(aij)

,-fast 1j(t) = Rate of impatience of robot ri concerning behavior set aij in the
absence of other robots performing task hi(aij)

mink(bslowij(k, t)) if (comr-ro.eceived(i, k,j, t - ri, t) = 1)
impatienceij (t • and

(comm -received(i, k,j, 0, t - Oij(k, t)) - 0)

-fast ij ( ) otherwise

0 if 3k.((comm_neceived(i, k,j, t - bt, t) = 1) and
(comm-received(i, k, j, 0, t - bt1) = 0)),

impatience.i-rset3 ,(t) = where bt = time since last communication check

I1 otherwise

Robot acquiescence:

V,i(t) = Time robot ri wants to maintain behavior set au's activity before
yielding to another robot

Ai,(t) = Time robot ri wants to maintain behavior set ali's activity before giving
up to try another behavior set
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0 if [(behavior set aLj of robot ri has been active for more
than wo(t) time units at time t) and
(3.r.coinnmrecei'cd(i, x,j, t - 7i, I) 1)]

acquiescencei(1) = or
(behavior set ais of robot ri has been active for more
than Ai(f) time units at time 1)

I otherwise

Motivation calculation:

The motivation of robot ri to perform behavior set aij at time t is calculated as
follows:

rnmj(O) = 0

mnij(t) = [mij(t - 1) + Inipatienceij(t)]

x sensory.feedbackij (t)

x activity-suppressionij (t)

x impatiencc-resetij(t)

x acquiescence ij (t)

Initially, the motivation to perform behavior set aij in robot ri is set to 0. This
motivation then increases at some positive rate impatienccij(t) unless one of four
situations occurs: (1) the sensory feedback indicates that the behavior set is no
longer needed, (2) another behavior set in ri activates, (3) some other robot has just
taken over task hi(aij) for the first time, or (4) the robot has decided to acquiesce
the task. In any of the:- e four situations, the motivation returns to 0. Otherwise,
the motivation grows until it crosses the threshold 0, at which time the behavior set
is activated and the robot can be said to have selected an action. Whenever some
behavior set aij is active in robot ri, ri broadcasts its current activity to other robots
at a rate of pi.
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Appendix B

Formal Model of L-ALLIANCE

The formal definition of the L-ALLIANCE cooperative robot architecture, including
mechanisms for learning and efficiency considerations, is provided below. Refer to
chapter 4 for a full explanation of this model.

Recall from chapter 3 that the behavior sets possessed by robot ri in ALLIANCE
are given by the set Ai = {ail, ai2 , ... }. Since different robots may have different
ways of performing the same task, we need a way of referring to the task a robot is
working on when it activates a behavior set. Thus, I define the set of n functions
{hi(alk), h 2(a 2k), ... , hn(ank)}, where hi(aik) returns the task of the mission that robot
ri is working on when it activates behavior set aik.

Given:

0 = Threshold of activity of a behavior set
strategy = Current impatience/acquiescence update strategy

Seven sources of input affect the motivation to perform a particular behavior set.
These inputs are defined as:

Sensory feedback:
1 if the sensory feedback in robot ri at time t

sensory.feedbackii(t) = indicates that behavior aij is applicable
0 otherwise

Inter-robot communication:

pi = Rate of messages per unit time that lubot ri sends concerning
its current activity
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214 APPENDIX B. FORMAL MODEL OF L-ALLIANCE{I if robot "i has received message from robot rk
concerning task hi(a, ,) in the time span

comm~reccived(i, k,j, 1, 2) = (tl. t12), where t1 < t2

0 otherwise

7j = Maximum time robot r- allows to pass without hearing from a particular
robot before assuming that that robot has ceased to function

robotsppresent(i, t) = {1k413j.(commin vccivnid(i, k,j, t - Ti, t) = 1)}

Suppression from active behavior sets:

0 if another behavior set. aik is active, k # j, on
activity-suppressionij(t) = robot ri at time t

1 otherwise

Learned robot influence:

0 if ( comm.-received(ix,j,0, t)) #0
learning-.impatience ij ( t) = jrobots presnt(it)

I otherwise

S= Number of trials over which task performance averages and standard
deviations are maintained

task-timei(k,j, t) = (average time over last t trials of rk's performance of
task hi(aij)) + (one standard deviation of these it attempts),
as measured by ri

1 if (task-time(ij,t) = min task-time(k,j,t))
kE robots -present( i,t)

task -categoryij(t) = and (( comm-received(i, x,j, t - ri. t)) = 0)
xE robots-pqresent(i,t)

2 otherwise

boredom threshold, = leve' of boredom at which robot ri ignores the presence of
other robots able to perform some task not currently
being executed

boredom.ratei = Rate of boredom of robot ri

L
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0 for t 0
boredomi() = - actit'ilty.y-irpprrssiollnij(I)) otherwise

x (bortdomin(t - 1) + borfdoin.ratti)

J0 if (boredoini(t) < bortdoin-thrisholdi) and
learneicd-irobot-ini~fluelc ij((t) (task -cahgoryij( () = 2)

1 otherwise

Robot impatience:

Oij(,' t) = Time during which robot ri is willing to allow robot rk•s

communication message to affect the motivation of b)ehavior set aij.{ task-timei(kjt) if (strategy = III)
task time (i,j, t) if (strategy = IV)

b-_slowij(k,t) = Rate of impatience of robot ri concerning behavior set aij after
discovering robot rk performing the task corresponding
to this behavior set

0
S m i m lo de(kt)

rain-delay = minimum allowed delay
max-delay = maximum allowed delay

high = maxtask-timei(k, j, t)

low = mintasktim ei (k, j, t)k,j

scale-factor = adelayj-min-delay
high-low

,5fastij(t) = Rate of impatience of robot ri concerning behavior set aij in the
absence of other robhts performing a similar behavior set/ i~~t -l w ~ se & _ae o if task-categoryi -(t) = 2{min-delay +(taML-time, (0i,4)-low) x scal-factor

max -delay -(tas timei(i,j,t)-low) x scaleactor otherwise

mink(6_slowij (k,t)) if (comm-received(i, k,j,t - ri, t) = 1)
impatiencej J(t) and

(comm -received(i, k,j,O,t - Oij(k,t)) = 0)

Ifastij(t) otherwise

r0 if 3k.((comm_received(i,k,j,t - bt,t) = 1) and
impatence resetj (t)(comm -received(7., k, j, 0, t - bt) = 0)),

impatience~.resetij(t) - where bt = time since last communication check

1 otherwise
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Robot acquiescence:

ý"o (t) = Time robot ri wants to maintain behavior set. aij's activity before
yielding to another robot.

task_tiiij(i.j, t) if (strohtgy = III)
min task_t~itn(k,. jt) if (strategy = IV)

kE robotspresfn1 ( it)

Aij(t) = Time robot ri wants to maintain behavior set (1id's activity before giving
up to try another behavior set

0 if [(behavior set aij of robot ri has been active for more
than e'ij(t) time units at time t) and
(3x.coMm.r cei'ed(i, x.j, t - Ti, t) = 1)]

acquiescenceij (t ) = ,
;behavior set aij of robot ri has been active for more

than Aij(t) time units at time t)
I otherwise

Motivation calculation:

The motivation of robot ri to perform behavior set aj a.t time t is calculated as
follows:

DURING ACTIVE LEARNING PHASE:

randomr-increm ent *- 0 x (a random number between 0 and 1)

Mij(O) = 0
mij(t) = ([ij(t - 1) + randoniincrement]

"x sensory-fefdbacki,(t)

"x activity.suppression ij (t)

"x karning.iimpatienceij(t)

The motivation to perform any given task thus increments at some random rate
until it crosses the threshold, unless the task becomes complete (sensory-feedback),
some other behavior set activates first (activity-suppression), or some other robot has
taken on that task (learning.impatience).

When the robots are working on a "live" mission., eir motivations to perform
their tasks increment according to the robots' learned information. The motivations
are thus calculated as follows:
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DITRING ADAPTIVE PHASE:

Mij(O) = 0
nlij(t) - [niij(t - 1) + tinpai*ni ic (I )j

x.s(118orYfffdback 1. (t)
x actitvity-suppr-(siqotiji(t)

"× inipatif tic( _r-fSOtjj(t)

"X (cqui.sctic( ij(t)

"× la rt edrobot _influ e c ij( t)

In either the active or the adaptive learning phases, when behavior set aij is op-
erational in robot ri, the corresponding motivational behavior broadcasts ri's current
activity to its teammates at a rate of pi.
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